Skip to main content

Advertisement

Log in

The role of algae in agriculture: a mathematical study

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boesch, D.F., Anderson, D.M., Horner, R.A., Shumway, S.E., Tester, P.A., Whitledge, T.E.: Harmful algal blooms in coastal waters; options for prevention, control and mitigation. NOAA Coastal Ocean Program. Decision Analysis Series No. 10 (1997)

  2. Beman, J.M., Arrigo, K.R., Matson, P.A.: Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005)

    Article  ADS  Google Scholar 

  3. Shukla, J.B., Misra, A.K., Chandra, P.: Modeling and analysis of the algal bloom in a lake caused by discharge of nutrients. Appl. Math. Comp. 196(2), 782–790 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chattopadhyay, J., Sarkar, R.R., Pal, S.: Mathematical modelling of harmful algal blooms supported by experimental findings. Ecol. Compl. 1, 225–235 (2004)

    Article  Google Scholar 

  5. Grover, J.P., Crane, K.W., Baker, J.W., Brooks, B.W., Roelke, D.L.: Spatial variation of harmful algae and their toxins in flowing water habitats: a theoretical exploration. J. Plankton Res. 33, 211–227 (2011)

    Article  Google Scholar 

  6. Hallegraeff, G.M.: A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99 (1993)

    Article  Google Scholar 

  7. Ho, J.C., Michalak, A.M.: Challenges intracking harmful algal blooms: A synthesis of evidence from Lake Erie. J. Great Lakes Res. 41, 317–325 (2015)

    Article  Google Scholar 

  8. Sole, J., Garcia-Ladona, E., Estrada, M.: The role of selective predation in harmful algal blooms. J. Marine Syst. 62, 46–54 (2006)

    Article  ADS  Google Scholar 

  9. Anderson, C.R., Kudela, R.M., Benitez-Nelson, C., Sekula-Wood, E., Burrell, C.T., Chao, Y., Langlois, G., Goodman, J., Siegel, D.A.: Detecting toxic diatom blooms from ocean color and a regional ocean model. Geophys. Res. Lett. 38, L04603 (2011)

    Article  ADS  Google Scholar 

  10. Chakraborty, S., Feudel, U.: Harmful algal blooms: combining excitability and competition. Theor. Ecol. 7, 221–237 (2014)

    Article  Google Scholar 

  11. Misra, A.K.: Modeling the depletion of dissolved oxygen due to algal bloom in a lake by taking Holling type-III interaction. Appl. Math. Comp. 217, 8367–8376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bitton, G., Fox, J.L., Strickland, H.G.: Removal of algae from Florida lakes by magnetic filtration. Appl. Microbiol. 30(6), 905–908 (1975)

    Google Scholar 

  13. Vuuren Van, L.R.J., Duuren Van, F.A.: Removal of algae from waste water maturation pond effluent. Water Pollution Control Federation 37, 1256–1262 (1965)

    Google Scholar 

  14. Conley, D.J.: Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410, 87–96 (1999)

    Article  Google Scholar 

  15. Connelly, R.: How algal biofertilizers can accelerate sustainable agriculture. The University of Texas at Austin. http://www.utexas.edu/sustainability/pssc/symposium/2011/16

  16. Trentacoste, E.M., Martinez, A.M., Zenk, T.: The place of algae in agriculture: policies for algal biomass production. Photosynth. Res. 123, 305–315 (2015)

    Article  Google Scholar 

  17. Waaland, J.R.: Commercial utilization. In: London, C.S., Wynne, J.M. (eds.) The Biology of Seaweeds, p. 726. University of California Press, Berkeley (1981)

    Google Scholar 

  18. Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M.: Agricultural importance of algae. Afr. J. Biotechnol. 11(54), 11648–11658 (2012)

    Article  Google Scholar 

  19. Povolny, M.: The effect of the steeping of peat-cellulose flowerpots (Jiffypots) in extracts seaweeds on the quality of tomato seedlings. In: Fogg, G.E., Jones, W.E. (eds.) Proceeding of the VIII International Seaweed Symposium. Marine Sci. Lab., Menai Bridge, Wales, 730. Production in India-A review. Indian J. Agric. Sci. 69(2) 73–83 (1981)

    Google Scholar 

  20. Round, F.E.: The Biology of the Algae, 2nd edn. Edward Arnold Publishers, London (1973)

    Google Scholar 

  21. Vessey, J.K.: Plant growth promoting rhizobacteria as bio-fertilizers. Plant Soil 255, 571–586 (2003)

    Article  Google Scholar 

  22. Spoehr, H.A., Milner, H.A.: The chemical composition of chlorella: effect of environmental conditions. Plant Physiol. 24(1), 120–149 (1949)

    Article  Google Scholar 

  23. Wyatt, T., Horwood, J.: Model which generates red tides. Nature 244, 238–240 (1973)

    Article  ADS  Google Scholar 

  24. Solomonovich, M., Apedaile, L.P., Freedman, H.I., Gebremedihen, A.H., Schilizzi, S.G.M., Belostotski, L.: A dynamical economic model of sustainable agriculture and the ecosphere. Appl. Math. Comp. 84, 221–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shukla, J.B., Misra, A.K., Chandra, P.: Mathematical modeling and analysis of the depletion of dissolved oxygen in eutrophied water bodies affected by organic pollutants. Nonlinear Analysis: RWA 9, 1851–1865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Edwards, A.M.: Adding detritus to a nutrient-phytoplankton-zooplankton model: a dynamical-systems approach. J. Plankton Res. 23(4), 389–413 (2001)

    Article  Google Scholar 

  27. Edwards, A.M., Bees, M.A.: Generic dynamics of a simple plankton population model with a non-integer exponent of closure. Chaos Solitons Fractals 12, 289–300 (2001)

    Article  ADS  MATH  Google Scholar 

  28. Truscott, J.E., Brindley, J.: Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998 (1994)

    Article  MATH  Google Scholar 

  29. Ebenhoh, W., Kohlmier, C., Radford, P.J.: The benthic biological submodel in the European Regional Seas Ecosystem Model. Neth. J. Sea Res. 33, 423–452 (1995)

    Article  Google Scholar 

  30. Braselton, J., Braselton, L.: A model of harmful algal blooms. Math. Comp. Model. 40, 923–934 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, S., Chen, X., Peng, Y., Peng, K.: A mathematical model of the effect of nitrogen and phosphorus on the growth of blue-green algae population. Appl. Math. Model. 33, 1097–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cloern, J.E.: Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 210, 223–253 (2001)

    Article  Google Scholar 

  33. Franks, P.J.S.: Models of harmful algal blooms. Limnol. Oceanogr. 42, 1273–1282 (1997)

    Article  Google Scholar 

  34. Misra, A.K., Tiwari, P.K., Venturino, E.: Modeling the impact of awareness on the mitigation of algal bloom in a lake. J. Biol. Phys. 42, 147–165 (2016)

    Article  Google Scholar 

  35. Cyanobacterial biofertilizer: Nature’s own solution for improved soil fertility. http://foodtank.com/news/2014/02/cyanobacterial-bio-fertilizer-natures-own-solution-for-improved-soil-fertil

  36. Huang, Y., Sass, R.L., Sun, W., Zhang, W., Sass, Y.Y.: Reducing nitrogen fertilizer use to mitigate negative environmental impact in China. James A. Baker III Institute for Public Rice Production (2010)

  37. Carpenter, S.R., Kraft, C.E., Wright, R., He, X., Soranno, P.A., Hodgson, J.R.: Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. Am. Nat. 140(5), 781–798 (1992)

    Article  Google Scholar 

  38. Eutrophication Oregon State University, http://people.oregonstate.edu/muirp/eutrophi.htm

  39. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, Ginn, Boston (1989)

    Google Scholar 

  40. Freedman, H.I., So, J.W.H.: Global stability and persistence of simple food chains. Math. Biol. 76, 69–86 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Amemiya, T., Enomoto, T., Rossberg, A.G., Yamamoto, T., Inamori, Y., Itoh, K.: Stability and dynamical behavior in a lake-model and implications for regime shifts in real lakes. Ecol. Model. 206, 54–62 (2007)

    Article  Google Scholar 

  42. Venkataraman, G.S. In: Stewart, W.D.P. (ed.): Nitrogen Fixation by Free-Living Microorganisms, pp. 207–218. Cambridge University Press, Cambridge (1975)

  43. Blue-green algae for rice production. FAO Soils Bulletin 46, Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a-ar124e.pdf

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their careful reading, valuable comments, and helpful suggestions, which have helped us to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Misra.

Ethics declarations

Funding

The research work of P.K. Tiwari is funded by the World Wide Style Project – Second Edition of the Dipartimento di Matematica ‘Giuseppe Peano’ of the Università di Torino.

Conflict of interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, P.K., Misra, A.K. & Venturino, E. The role of algae in agriculture: a mathematical study. J Biol Phys 43, 297–314 (2017). https://doi.org/10.1007/s10867-017-9453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-017-9453-8

Keywords

Navigation