Skip to main content
Log in

Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young’s modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young’s modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)

    Article  MathSciNet  Google Scholar 

  2. Wirtz, D., Konstantopoulos, K., Searson, P.C.: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011)

    Article  Google Scholar 

  3. Slattum, G.M., Rosenblatt, J.: Tumor cell invasion: an emerging role for basal epithelial cell extrusion. Nat. Rev. Cancer 14, 495–501 (2014)

    Article  Google Scholar 

  4. Byun, S., Son, S., Amodei, D., Cermak, N., Shaw, J., Kang, J.H., Hecht, V.C., Winslow, M.M., Jacks, T., Mallick, P., Manalis, S.R.: Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 110, 7580–7585 (2013)

    Article  ADS  Google Scholar 

  5. Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Aebi, U., Bentires-Alj, M., Lim, R.Y.H., Schoenenberger, C.A.: The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012)

    Article  ADS  Google Scholar 

  6. Swaminathan, V., Mythreye, K., OBrien, E.T., Berchuck, A., Blobe, G.C., Superfine, R.: Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011)

    Article  Google Scholar 

  7. Cattin, C.J., Duggelin, M., Martinez-Martin, D., Gerber, C., Muller, D.J., Stewart, M.P.: Mechanical control of mitotic progression in single animal cells. Proc. Natl. Acad. Sci. U. S. A. 112, 11258–11263 (2015)

    Article  ADS  Google Scholar 

  8. Longo, G., Alonso-Sarduy, L., Rio, L.M., Bizzini, A., Trampuz, A., Notz, J., Dietler, G., Kasas, S.: Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat. Nanotechnol. 8, 522–526 (2013)

    Article  ADS  Google Scholar 

  9. Xu, W., Mezencev, R., Kim, B., Wang, L., McDonald, J., Sulchek, T.: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7, e46609 (2012)

    Article  ADS  Google Scholar 

  10. Li, M., Liu, L., Xi, N., Wang, Y., Dong, Z., Xiao, X., Zhang, W.: Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci. China Life Sci. 55, 968–973 (2012)

    Article  Google Scholar 

  11. Carlo, D.D.: A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17, 32–42 (2012)

    Article  Google Scholar 

  12. Kasas, S., Longo, G., Dietler, G.: Mechanical properties of biological specimens explored by atomic force microscopy. J. Phys. D Appl. Phys. 46, 133001 (2013)

    Article  ADS  Google Scholar 

  13. Zimmer, C.C., Liu, Y.X., Morgan, J.T., Yang, G., Wang, K.H., Kennedy, I.M., Barakat, A.I., Liu, G.: New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J. Phys. Chem. B 118, 1246–1255 (2014)

    Article  Google Scholar 

  14. Ali, S., Wall, I.B., Mason, C., Pelling, A.E., Veraitch, F.S.: The effect of Young’s modulus on the neuronal differentiation of mouse embryonic stem cells. Acta Biomater. 25, 253–267 (2015)

    Article  Google Scholar 

  15. Abolmaali, S.S., Tamaddon, A.M., Dinarvand, R.: A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother. Pharmacol. 71, 1115–1130 (2013)

    Article  Google Scholar 

  16. Rafique, B., Khalid, A.M., Akhtar, K., Jabbar, A.: Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosens. Bioelectron. 44, 21–26 (2013)

    Article  Google Scholar 

  17. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  ADS  Google Scholar 

  18. Touhami, A., Nysten, B., Dufrene, Y.F.: Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003)

    Article  Google Scholar 

  19. Li, M., Liu, L., Xi, N., Wang, Y., Xiao, X., Zhang, W.: Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. Langmuir 30, 1609–1621 (2014)

    Article  Google Scholar 

  20. Moreno-Flores, S., Benitez, R., Vivanco, M., Toca-Herrera, J.L.: Stress relaxation microscopy: imaging local stress in cells. J. Biomech. 43, 349–354 (2010)

    Article  Google Scholar 

  21. Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J., Stride, E., Mahadevan, L., Charras, G.T.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013)

    Article  ADS  Google Scholar 

  22. Lekka, M.: Discrimination between normal and cancerous cells using AFM. Bionanosci. 6, 65–80 (2016)

    Article  Google Scholar 

  23. Babahosseini, H., Carmichael, B., Strobl, J.S., Mahmoodi, S.N., Agah, M.: Sub-cellular force microscopy in single normal and cancer cells. Biochem. Biophys. Res. Commun. 463, 587–592 (2015)

    Article  Google Scholar 

  24. Lekka, M., Pogoda, K., Gostek, J., Klymenko, O., Prauzner-Bechcicki, S., Wiltowska-Zuber, J., Jaczewska, J., Lekki, J., Stachura, Z.: Cancer cell recognition - mechanical phenotype. Micron 43, 1259–1266 (2012)

    Article  Google Scholar 

  25. Li, M., Liu, L., Xi, N., Wang, Y., Xiao, X., Zhang, W.: Quantitative analysis of drug-induced complement-mediated cytotoxic effect on single tumor cells using atomic force microscopy and fluorescence microscopy. IEEE Trans. Nanobiosci. 14, 84–94 (2015)

    Article  Google Scholar 

  26. Nguyen, T.D., Oloyede, A., Singh, S., Gu, Y.: Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates. J. Mech. Behav. Biomed. Mater. 49, 343–354 (2015)

    Article  Google Scholar 

  27. Spedden, E., White, J.D., Naumova, E.N., Kaplan, D.L., Staii, C.: Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys. J. 103, 868–877 (2012)

    Article  ADS  Google Scholar 

  28. Rianna, C., Ventre, M., Cavalli, S., Radmacher, M., Netti, P.A.: Micropatterned azopolymer surfaces modulate cell mechanics and cytoskeleton structure. ACS Appl. Mater. Interfaces 7, 1503–21510 (2015)

    Google Scholar 

  29. Wang, X., Bleher, R., Brown, M.E., Garcia, J.G.N., Dudek, S.M., Shekhawat, G.S., Dravid, V.P.: Nano-biomechanical study of spatio-temporal cytoskeleton rearrangements that determine subcellular mechanical properties and endothelial permeability. Sci. Rep. 5, 11097 (2015)

    Article  ADS  Google Scholar 

  30. Okajima, T., Tanaka, M., Tsukiyama, S., Kadowaki, T., Yamamoto, S., Shimomura, M., Tokumoto, H.: Stress relaxation measurement of fibroblast cells with atomic force microscopy. Jpn. J. Appl. Phys. 46, 5552–5555 (2007)

    Article  ADS  Google Scholar 

  31. Oh, J.M., Park, M., Kim, S.T., Jung, J.Y., Kang, Y.G., Choy, J.H.: Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. J. Phys. Chem. Solids 67, 1024–1027 (2006)

    Article  ADS  Google Scholar 

  32. Zhang, X.Q., Zeng, M.G., Li, S.P., Li, X.D.: Methotrexate intercalated layer double hydroxides with different particle sizes: structural study and controlled release properties. Colloid. Surf. B Biointerfaces 117, 98–106 (2014)

    Article  ADS  Google Scholar 

  33. Sbrana, F., Sassoli, C., Meacci, E., Nosi, D., Squecco, R., Paternostro, F., Tiribilli, B., Zecchi-Orlandini, S., Francini, F., Formigli, L.: Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am. J. Physiol. Cell Physiol. 295, C160–C172 (2008)

    Article  Google Scholar 

  34. Keren, K., Pincus, Z., Allen, G.M., Barnhart, E.L., Marriott, G., Mogilner, A., Theriot, J.A.: Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008)

    Article  ADS  Google Scholar 

  35. Ludwig, T., Kirmse, R., Poole, K., Schwarz, U.S.: Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflüg. Arch. Eur. J. Physiol. 456, 29–49 (2008)

    Article  Google Scholar 

  36. Thery, M., Bornens, M.: Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006)

    Article  Google Scholar 

  37. Stewart, M.P., Helenius, J., Toyoda, Y., Ramanathan, S.P., Muller, D.J., Hyman, A.A.: Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011)

    Article  ADS  Google Scholar 

  38. Rotsch, C., Radmacher, M.: Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535 (2000)

    Article  ADS  Google Scholar 

  39. Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010)

    Article  ADS  Google Scholar 

  40. Park, S., Lee, Y.J.: AFM-based dual nano-mechanical phenotypes for cancer metastasis. J. Biol. Phys. 40, 413–419 (2014)

    Article  Google Scholar 

  41. Darling, E.M., Zauscher, S., Guilak, F.: Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartilage 14, 571–579 (2006)

    Article  Google Scholar 

  42. Okajima, T., Tanaka, M., Tsukiyama, S., Kadowaki, T., Yamamoto, S., Shimomura, M., Tokumoto, H.: Stress relaxation of HepG2 cells measured by atomic force microscopy. Nanotechnology 18, 084010 (2007)

    Article  ADS  Google Scholar 

  43. Haase, K., Pelling, A.E.: Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12, 20140970 (2015)

    Article  Google Scholar 

  44. Chen, J.: Nanobiomechanics of living cells: a review. Interface Focus 4, 20130055 (2014)

    Article  Google Scholar 

  45. Zheng, Y., Nguyen, J., Wei, Y., Sun, Y.: Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13, 2464–2483 (2013)

    Article  Google Scholar 

  46. Kirmizis, D., Logothetidis, S.: Atomic force microscopy probing in the measurement of cell mechanics. Int. J. Nanomed. 5, 137–145 (2010)

    Article  Google Scholar 

  47. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  48. Reiners, K.S., Topolar, D., Henke, A., Simhadri, V.R., Kessler, J., Sauer, M., Bessler, M., Hansen, H.P., Tawadros, S., Herling, M., Kronke, M., Hallek, M., Strandmann, E.P.: Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 121, 3658–3665 (2013)

    Article  Google Scholar 

  49. Yan, Z., Bai, X.C., Yan, C., Wu, J., Li, Z., Xie, T., Peng, W., Yin, C.C., Li, X., Scheres, S.H., Shi, Y., Yan, N.: Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015)

    Article  ADS  Google Scholar 

  50. Beckmann, J., Schubert, R., Chiquet-Ehrismann, R., Muller, D.J.: Deciphering teneurin domains that facilitate cellular recognition, cell-cell adhesion, and neurite outgrowth using atomic force microscopy-based single-cell force spectroscopy. Nano Lett. 13, 2937–2946 (2013)

  51. Collins, F.S., Varmus, H.: A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015)

    Article  Google Scholar 

  52. Zheng, Y., Chen, J., Cui, T., Shehata, N., Wang, C., Sun, Y.: Characterization of red blood cell deformability change during blood storage. Lab Chip 14, 577–583 (2014)

    Article  Google Scholar 

  53. Sackmann, E.K., Fulton, A.L., Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014)

    Article  ADS  Google Scholar 

  54. Zhou, E.H., Martinez, F.D., Fredberg, J.J.: Cell rheology: mush rather than machine. Nat. Mater. 12, 184–185 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61503372, 61522312, 61375107, 61327014, 61433017) and the CAS FEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianqing Liu or Ning Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, L., Xiao, X. et al. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. J Biol Phys 42, 551–569 (2016). https://doi.org/10.1007/s10867-016-9423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9423-6

Keywords

Navigation