Skip to main content
Log in

Characterization of crystalline structures in Opuntia ficus-indica

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reyes-Agüero, A.J., Aguirre-Rivera, R.J., Hernández, H.M.: Systematic notes and a detailed description of Opuntia ficus-indica (L.) Mill. (Cactaceae). Agrociencia 39, 395–408 (2005)

    Google Scholar 

  2. Granados, D., Castañeda, A.D.: El Nopal: Historia, fisiología, genética e importancia, 2nd edn. Trillas, México (1996)

  3. Saenz, H.C.: Cladodes: a source of dietary fiber. J. Prof. Assoc. Cactus Dev. 2, 117–123 (1997)

    Google Scholar 

  4. Rodríguez- García, M.E., De Lira, C., .B. Hernández, E., Cornejo V, M.A., Palacios F. A. J., Rojas, M. I., Reynoso, R., Quintero, .L.C., Del Real, A., Zepeda, T. A., Muñoz, C. T.: Physicochemical characterization of nopal pads (Opunita ficus-indica) and dry vacuum nopal powders as a function of the maturation., Plant Food Hum. Nutr. 62, 107–112 (2007)

  5. Hernández-Urbiola, M.I., Contreras-Padilla, M., Pérez-Torrero, E., Hernández-Quevedo, G., Rojas-Molina, J.I., Rodríguez-García, M.E.: Study of nutritional composition of nopal (Opuntia ficus-indica cv. Redonda) at different maturity stages. Open Nutr J. 4, 1–6 (2011)

    Article  Google Scholar 

  6. Aizenberg, J., Hanson, J., Ilan, M., Leiserowitz, L., Koetzle, T.F., Addadi, L., Weiner, S.: Morphogenesis of calcitic sponge spicules — a role for specialized proteins interacting with growing crystals. FASEB J. 9, 262–268 (1995)

  7. Zhou, G.T., Guan, Y.B., Yao, Q.Z., Fu, Q.S.: Biomimetic mineralization of prismatic calcite mesocrystals: relevance to biomineralization. Chem. Geol. 279, 63–72 (2010)

  8. Weiner, S., Addadi, L.J.: Design strategies in mineralized biological materials Mater. Chem. 7, 689–702 (1997)

  9. Weiner, S.: Biomineralization: a structural perspective. J. Struct. Biol. 163, 229–234 (2008)

    Article  Google Scholar 

  10. Monje, P.V., Baran, E.J.: Complex biomineralization pattern in cactaceae. J. Plant Physiol. 161, 121–123 (2004)

  11. Contreras-Padilla, M., Pérez-Torrero, E., Hernández-Urbiola, M.I., Hernández-Quevedo, G., del Real, A., Rivera-Muñoz, E.M., Rodríguez-García, M.E.: Evaluation of oxalates and calcium in nopal pads (Opuntia ficus-indica var. redonda) at different maturity stages. J. Food Compos. Anal. 24, 38–43 (2012)

  12. AOAC, Official Methods of Analysis. 17th ed., Association of Official Analytical Chemists, Gaithersburg, MD, USA, 2000

  13. Sharygin, V.V., Zhitova, L.M., Nigmatulina, E.N.: Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa. South Africa: the first occurrence in alkaline carbonatite complexes. Russ. Geol. and Geophys. 52, 208–219 (2011)

  14. Frost, R.L., Weier, M.L.: Thermal treatment of whewellite: a thermal analysis and Raman spectroscopic study. Thermochim. Acta. 409, 79–85 (2004)

  15. Lagarto, A., Bellma, A., Tillán, J., Gabilondo, T., Guerra, I., Ocanto, Z., Couret, M., González, R.: Effect of dolomite oral exposure in Wistar rats during organogenesis period of pregnancy. Exp. Toxicol. Pathol. 60, 499–504 (2008)

  16. Straub, D.A.: Calcium supplementation in clinical practice. Nutr. Clin. Pract. 22, 286–296 (2007)

    Article  MathSciNet  Google Scholar 

  17. Rudea, R.K., Gruber, E.J.H.: Magnesium deficiency and osteoporosis: animal and human observations. Nutr. Biochem. 15, 710–716 (2004)

  18. Tucker, K.L., Hannan, M.T., Chen, H., Adrienne, L.P., Cupples, W.F., Kiel, D.P.: Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 69, 727–736 (1999)

  19. Hatzor, Y. H., Zur, A., Mimran Y. H.: Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics. 281, 141-16l (1997)

  20. Wei, H., Shen, Q., Zhao, Y., Wang, D., Xu, J.D.: Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulfate and/or polypyrrolidone. Cryst. Growth 260, 511–516 (2004)

  21. Hashimoto, K., Kudla, J.: Calcium decoding mechanisms in plants. Biochimie 93, 2054–2059 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dra. Beatriz Millán-Malo, Dra. Genoveva Hernández Padrón and Dr. Rodrigo Esparza-Muñoz (UNAM-CFATA, Mexico) for their technical assistance in XRD, FTIR, and SEM analysis, respectively. Margarita Contreras Padilla would also like to thank CONACYT-Mexico for the financial support of her postdoctoral position at CFATA-UNAM.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Rivera-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Padilla, M., Rivera-Muñoz, E.M., Gutiérrez-Cortez, E. et al. Characterization of crystalline structures in Opuntia ficus-indica . J Biol Phys 41, 99–112 (2015). https://doi.org/10.1007/s10867-014-9368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9368-6

Keywords

Navigation