Skip to main content
Log in

THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG) 3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG) 3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 44, 98–104 (1958)

    Article  ADS  Google Scholar 

  2. Okazaki, K., Takada, S.: Dynamic energy landscape view of coupled binding and protein conformational change: Induced-fit versus population-shift mechanisms. Proc. Natl. Acad. Sci. U.S.A. 105, 11182–11187 (2008)

    Article  ADS  Google Scholar 

  3. Goh, C.-S., Milburn, D., Gerstein, M.: Conformational changes associated with protein–protein interactions. Curr. Opin. Struct. Biol. 14, 104–109 (2004)

    Article  Google Scholar 

  4. Betts, M.J., Sternberg, M.J.E.: An analysis of conformational changes on protein–protein association: implications for predictive docking. Protein Eng. 12, 271–283 (1999)

    Article  Google Scholar 

  5. Bakan, A., Bahar, I.: The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc. Natl. Acad. Sci. U.S.A. 106, 14349–14354 (2009)

    Article  ADS  Google Scholar 

  6. Bahar, I.: On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. J. Gen. Physiol. 135, 563–573 (2010)

    Article  ADS  Google Scholar 

  7. Meireles, L., Gur, M., Bakan, A., Bahar, I.: Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20, 1645–1658 (2011)

    Article  Google Scholar 

  8. Bahar, I., Chennubhotla, C., Tobi, D.: Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr. Opin. Struct. Biol. 17, 633–640 (2007)

    Article  Google Scholar 

  9. Hub, J.S., Groot, B.: Detection of functional modes in protein dynamics. PLoS Comput. Biol. 5, e1000480 (2009)

    Article  Google Scholar 

  10. Limongelli, V., Marinelli, L., Cosconati, S., La Motta, C., Sartini, S., Mugnaini, L., Da Settimo, F., Novellino, E., Parrinello, M.: Sampling protein motion and solvent effect during ligand binding. Proc. Natl. Acad. Sci. U.S.A. 109, 1467–1472 (2012)

    Article  ADS  Google Scholar 

  11. Setny, P., Baron, R., Kekenes-Huskey, P.M., McCammon, J.A., Dzubiella, J.: Solvent fluctuations in hydrophobic cavity–ligand binding kinetics. Proc. Natl. Acad. Sci. U.S.A. (2013). doi:10.1073/pnas.1221231110

  12. Poole, P., Finney, J.: Solid-phase protein hydration studies. Methods Enzymol. 127, 284–293 (1986)

    Article  Google Scholar 

  13. Wexler, A., Hasegawa, S.: Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50 C. J. Res. Natl. Bur. Stan. 53, 19–26 (1954)

    Article  Google Scholar 

  14. Sartor, G., Hallbrucker, A., Mayer, E.: Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass– >liquid transition and crystallization behavior on reheating. Biophys. J. 69, 2679–2694 (1995)

    Article  ADS  Google Scholar 

  15. Roh, J.H., Curtis, J.E., Azzam, S., Novikov, V.N., Peral, I., Chowdhuri, Z., Gregory, R.B., Sokolov, A.P.: Influence of hydration on the dynamics of lysozyme. Biophys. J. 91, 2573–2588 (2006)

    Article  ADS  Google Scholar 

  16. Xu, J., Plaxco, K., Allen, S.: Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory. J. Phys. Chem. B 110, 24255–24259 (2006)

    Article  Google Scholar 

  17. Knab, J., Chen, J.-Y., Markelz, A.: Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys. J. 90, 2576–2581 (2006)

    Article  ADS  Google Scholar 

  18. Zakaria, H.A., Fischer, B.M., Bradley, A.P., Jones, I., Abbott, D., Middelberg, A.P.J., Falconer, R.J.: Low-frequency spectroscopic analysis of monomeric and fibrillar lysozyme. Appl. Spectrosc. 65, 260–264 (2011)

    Article  ADS  Google Scholar 

  19. Stehle, C.I., Abuillan, W., Gompf, B., Dressel, M.: Far-infrared spectroscopy on free-standing protein films under defined temperature and hydration control. J. Chem. Phys. 136, 075102 (2012)

    Article  ADS  Google Scholar 

  20. Bakan, A., Meireles, L.M., Bahar, I.: ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011)

    Article  Google Scholar 

  21. Berendsen, J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  ADS  Google Scholar 

  22. Hess, H., Berendsen, J.C., Fraaije, J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  Google Scholar 

  23. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  ADS  Google Scholar 

  24. Eyal, E., Yang, L.-W., Bahar, I.: Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics 22, 2619–2627 (2006)

    Article  Google Scholar 

  25. He, Y., Chen, J.-Y., Knab, J.R., Zheng, W., Markelz, A.G.: Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100, 1058–1065 (2011)

    Article  ADS  Google Scholar 

  26. Tobi, D., Bahar, I.: Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. U.S.A. 102, 18908–18913 (2005)

    Article  ADS  Google Scholar 

  27. Bruccoleri, R.E., Karplus, M., McCammon, J.A.: The hinge-bending mode of a lysozyme–inhibitor complex. Biopolymers 25, 1767–1802 (1986)

    Article  Google Scholar 

  28. Ding, T., Middelberg, A.P.J., Huber, T., Falconer, R.J.: Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme. Vib. Spectrosc. 61, 144–150 (2012)

    Article  Google Scholar 

  29. Moeller, K.D., Williams, G.P., Steinhauser, S., Hirschmugl, C., Smith, J.C.: Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation. Biophys. J. 61, 276–280 (1992)

    Article  Google Scholar 

  30. Woods, K.N.: Solvent-induced backbone fluctuations and the collective librational dynamics of lysozyme studied by terahertz spectroscopy. Phys. Rev. E 81, 031915 (2010)

    Google Scholar 

  31. Diehl, M., Doster, W., Petry, W., Schober, H.: Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997)

    Article  Google Scholar 

  32. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)

    Article  Google Scholar 

  33. Balsera, M.A., Wriggers, W., Oono, Y., Schulten, K.: Principal component analysis and long time protein dynamics. J. Phys. Chem. 100, 2567–2572 (1996)

    Article  Google Scholar 

  34. Haliloglu, T., Bahar, I.: Structure-based analysis of protein dynamics: Comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins 37, 654–667 (1999)

    Article  Google Scholar 

  35. McCammon, J.A., Gelin, B.R., Karplus, M., Wolynes, P.G.: The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976)

    Article  ADS  Google Scholar 

  36. Emekli, U., Schneidman-Duhovny, D., Wolfson, H.J., Nussinov, R., Haliloglu, T.: HingeProt: Automated prediction of hinges in protein structures. Proteins 70, 1219–1227 (2008)

    Article  Google Scholar 

  37. Paciaroni, A., Bizarri, A.R., Cannistraro, S.: Neutron scattering evidence of a boson peak in protein hydration water. Phys. Rev. E 60, R2476–R2479 (1999)

    Article  ADS  Google Scholar 

  38. Tarek, M., Tobias, D.J.: Effects of solvent damping on side chain and backbone contributions to the protein boson peak. J. Chem. Phys. 115, 1607–1612 (2001)

    Article  ADS  Google Scholar 

  39. Giraud, G., Karolin, J., Wynne, K.: Low-frequency modes of peptides and globular proteins in solution observed by Ultrafst OHD-RIKES spectroscopy. Biophys. J. 85, 1903–1913 (2003)

    Article  Google Scholar 

  40. Oxtoby, D.W.: Picosecond phase relaxation experiments: A microscopic theory and a new interpretation. J. Chem. Phys. 74, 5371 (1981)

    Article  ADS  Google Scholar 

  41. Frauenfelder, H., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988)

    Article  Google Scholar 

  42. Frauenfelder, H., Sligar, S., Wolynes, P.: The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991)

    Article  ADS  Google Scholar 

  43. Kumar, S., Ma, B., Tsai, C.-J., Sinha, N., Nussinov, R.: Folding and binding cascades: Dynamic landscapes and population shifts. Protein Sci. 9, 10–19 (2000)

    Article  Google Scholar 

  44. Kubo, R., Toda, M., Hashitusme, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, New York (1985)

    Book  Google Scholar 

  45. Ishikawa, H., Kwak, K., Chung, J.K., Kim, S., Fayer, M.D.: Direct observation of fast protein conformational switching. Proc. Natl. Acad. Sci. U.S.A. 105, 8619–8624 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Woods.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.83 MB)

(PDF 323 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, K.N. THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions. J Biol Phys 40, 121–137 (2014). https://doi.org/10.1007/s10867-014-9341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9341-4

Keywords

Navigation