Skip to main content

Advertisement

Log in

Simultaneous identification of growth law and estimation of its rate parameter for biological growth data: a new approach

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Scientific formalizations of the notion of growth and measurement of the rate of growth in living organisms are age-old problems. The most frequently used metric, “Average Relative Growth Rate” is invariant under the choice of the underlying growth model. Theoretically, the estimated rate parameter and relative growth rate remain constant for all mutually exclusive and exhaustive time intervals if the underlying law is exponential but not for other common growth laws (e.g., logistic, Gompertz, power, general logistic). We propose a new growth metric specific to a particular growth law and show that it is capable of identifying the underlying growth model. The metric remains constant over different time intervals if the underlying law is true, while the extent of its variation reflects the departure of the assumed model from the true one. We propose a new estimator of the relative growth rate, which is more sensitive to the true underlying model than the existing one. The advantage of using this is that it can detect crucial intervals where the growth process is erratic and unusual. It may help experimental scientists to study more closely the effect of the parameters responsible for the growth of the organism/population under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arzate, M.E., Heras, E.H., Ramirez, L.C.: A functionally diverse population growth model. Math. Biosci. 187, 21–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yeatts, F.R.: A growth-controlled model of the shape of a sunflower head. Math. Biosci. 187, 205–221 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sibly, R.M., Barker, D., Denham, M.C., Hone, J., Pagel, M.: On the regulation of populations of mammals, birds, fish, and insects. Science 309, 607–610 (2005)

    Article  ADS  Google Scholar 

  4. Pomerantz, M.J., Thomas, W.R., Gilpin, M.E.: Asymmetries in population growth regulated by intraspecific competition: Empirical studies and model tests. Oecologia 47(3), 311–322 (1980)

    Article  Google Scholar 

  5. Florio, M., Colautti, S.: A logistic growth theory of public expenditures: A study of five countries over 100 years. Public Choice 122, 355–393 (2005)

    Article  Google Scholar 

  6. Kozusko, F., Bajzer, Z.: Combining Gompertzian growth and cell population dynamics. Math. Biosci. 185, 153–167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baranyi, J., Pin, C.: A parallel study on bacterial growth and inactivation. J. Theor. Biol. 210, 327–336 (2001)

    Article  Google Scholar 

  8. Fokas, N.: Growth functions, social diffusion and social change. Rev. Sociol. 13, 5–30 (2007)

    Article  Google Scholar 

  9. Katsanevakis, S.: Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish. Res. 81, 229–235 (2006)

    Article  Google Scholar 

  10. Yin, X., Goudriaan, J., Lantinga, E.A., Vos, J., Spiertz, H.J.: A flexible sigmoid function of determine growth. Ann. Bot. 91, 361–371 (2003)

    Article  Google Scholar 

  11. Bajzer, Z., Carr, T., Josic, K., Russell, S., Dingli, D.: Modeling of cancer virotherapy with recombinant measles viruses. J. Theor. Biol. 252(1), 109–122 (2008)

    Article  MathSciNet  Google Scholar 

  12. Day, T., Taylor, P.D.: Von Bertalanffy’s growth equation should not be used to model age and size at maturity. Am. Nat. 149(2), 381–393 (1997)

    Article  Google Scholar 

  13. Knight, W.: Asymptotic growth: an example of nonsense disguised as mathematics. J. Fish. Res. Board Can. 25, 1303–1307 (1968)

    Article  Google Scholar 

  14. Kimura. D.K.: Testing nonlinear regression parameters under heteroscedastic, normally distributed errors. Biometrics 46, 697–708 (1990)

    Article  Google Scholar 

  15. Kirkwood, G.P.: Estimation of von Bertalanffy growth curve parameters using both length increment and age-length data. Can. J. Fish. Aquat. Sci. 40, 1405–1411 (1983)

    Article  Google Scholar 

  16. Essington, T.E., Kitchell, J.F., Walters, C.J.: The von Bertalanffy growth function, bioenergentics, and the consumption rates of fish. Can. J. Fish. Aquat. Sci. 58, 2129–2138 (2001)

    Article  Google Scholar 

  17. de Valdar. H.P.: Density-dependence as a size-independent regulatory mechanism. J. Theor. Biol. 238, 245–256 (2006)

    Article  Google Scholar 

  18. Tjørve, E., Tjørve, K.M.C.: A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. J. Theor. Biol. 267, 417–425 (2010)

    Article  Google Scholar 

  19. Kozusko, F., Bourdeau, M.: A unified model of sigmoid tumour growth based on cell proliferation and quiescence. Cell Prolif. 40, 824–834 (2007)

    Article  Google Scholar 

  20. Kozusko, F., Bourdeau, M.: Trans-theta logistics: A new family of population growth sigmoid functions. Acta Biotheor. 59, 273–289 (2011)

    Article  Google Scholar 

  21. Imperial College NERC Centre for Population Biology: The Global Population Dynamics Database Version 2 (2010) [ http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html]

  22. Eberhardt, L.L., Breiwick, J.M., Demaster, D.P.: Analyzing population growth curves. Oikos 117, 1240–1246 (2008)

    Article  Google Scholar 

  23. Clark, F., Brook, B.W., Delean, S., Akcakaya, H.R., Bradshaw, C.J.A.: The theta-logistic is unreliable for modeling most census data. Methods Ecol. Evol. 1, 253–262 (2010)

    Google Scholar 

  24. Knape, J., de Valpine, P.: Are patterns of density dependence in the global population dynamics database driven by uncertainty about population abundance? Ecol. Lett. 15, 17–23 (2012)

    Article  Google Scholar 

  25. Cameron, T.C., Benton, T.G.: Stage-structured harvesting and its effects: an empirical investigation using soil mites. J. Anim. Ecol. 73, 996–1006 (2004)

    Article  Google Scholar 

  26. Sæther, B.-E., Engen, S., Matthysen, E.: Demographic characteristics and population dynamical patterns of solitary birds. Science 295, 2070–2073 (2002)

    Article  Google Scholar 

  27. Caughley, G., Sinclair, A.R.E.: Wildlife Ecology and Management. Blackwell Scientific, Boston, MA (1994)

    Google Scholar 

  28. Philippi, T.E., Carpenter, M.P., Case, T.J., Gilpin, M.E.: Drosophila population dynamics: chaos and extinction. Ecology 68, 154–159 (1987)

    Article  Google Scholar 

  29. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  30. Doncaster, C.P.: Comment on the regulation of populations of mammals, birds, fish, and insects iii. Science 311, 1100 (2006)

    Article  Google Scholar 

  31. Doncaster, C.P.: Non-linear density dependence in time series is not evidence of non-logistic growth. Theor. Popul. Biol. 73, 483–489 (2008)

    Article  MATH  Google Scholar 

  32. Zotin, A.I.: Thermodynamics and growth of organisms in ecosystems. Can. Bull. Fish. Aquat. Sci. 213, 27–37 (1985)

    Google Scholar 

  33. Tsoularis, A., Wallace, J.: Analysis of logistic growth models. Math. Biosci. 179, 21–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Bhattacharya, S., Sengupta, A., Basu, T.K.: Evaluation of expected absolute error affecting the maximum specific growth rate for random relative error of cell concentration. World J. Microbiol. Biotechnol. 18(3), 285–288 (2002)

    Article  Google Scholar 

  35. Banik, P., Pramanik, P., Sarkar, R.R., Bhattacharya, S., Chattopadhayay, J.: A mathematical model on the effect of M. denticulata weed on different winter crops. Biosystems 90(3), 818–829 (2007)

    Article  Google Scholar 

  36. Bhattacharya, S., Basu, A., Bandyopadhyay, S.: Goodness-of-fit testing for exponential polynomial growth curves. Commun. Stat. Theory Methods 38, 1–24 (2009)

    MathSciNet  Google Scholar 

  37. Mandal, A., Huang, W.T., Bhandari, S.K., Basu, A.: Goodness-of-fit testing in growth curve models: A general approach based on finite differences. Comput. Stat. Data Anal. 55, 1086–1098 (2011)

    Article  MathSciNet  Google Scholar 

  38. Fisher, R.A.: Some remarks on the methods formulated in a recent article on the quantitative analysis of plant growth. Ann. Appl. Biol. 7, 367–372 (1921)

    Article  Google Scholar 

  39. Blackman, V.H.: The compound interest law and plant growth. Ann. Bot. 33, 353–360 (1919)

    Google Scholar 

  40. Brenchley, W.: On the relations between growth and the environmental conditions of temperature and bright sunshine. Ann. Appl. Biol. 6, 211–244 (1920)

    Article  Google Scholar 

  41. Briggs, G.E., Kidd, F., West, C.: A quantitative analysis of plant growth. Part-I. Ann. Appl. Biol. 7, 103–123 (1920)

    Article  Google Scholar 

  42. West, C., Briggs, G.E., Kidd, F.: Methods and significant relations in the quantitative analysis of plant growth. New Phytol. 19, 200–207 (1920)

    Article  Google Scholar 

  43. Ball, J.N., Jones, J.W.: On the growth of the brown trout of llyn tegid. Proc. Zool. Soc. London 134, 1–41 (1960)

    Article  Google Scholar 

  44. Causton, D.R.: A computer program for fitting the Richards function. Biometrics 25, 401–409 (1969)

    Article  Google Scholar 

  45. Rao, C.R.: Some statistical methods for comparison of growth curves. Biometrics 14, 1–17 (1958)

    Article  MATH  Google Scholar 

  46. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London 115, 513–583 (1825)

    Article  Google Scholar 

  47. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique 10, 113–121 (1938)

    Google Scholar 

  48. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  49. Richards, F.J.: The quantitative analysis of growth. In: Steward, F.C. (ed.) Plant Physiology a treatise. VA. Analysis of Growth. Academic Press, London (1969)

  50. Ritz, C., Streibig, J.C.: Nonlinear Regression with R. Springer (2008)

  51. Bhowmick, A.R., Bhattacharya, S.: A new growth curve model for biological growth: Some inferential studies on the growth of Cirrhinus mrigala. Submitted for publication (2013)

  52. Bhattacharya, S.: Growth Curve Modelling and Optimality Search Incorporating Chronobiological and Directional Issues for an Indian Major Carp Cirrhinus Mrigala, Ph.D. dissertation. Jadavpur University, Kolkata, India (2003)

    Google Scholar 

  53. Borzani, W.: A general equation for the evaluation of the error that affects the value of the maximum specific growth rate. World J. Microbiol. Biotechnol. 10(4), 475–476 (1994)

    Article  ADS  Google Scholar 

  54. Chen, Y., Jackson, D.A., Harvey, H.H.: A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can. J. Fish. Aquat. Sci. 49(6), 1228–1235 (1992)

    Article  Google Scholar 

  55. France, J., Thornley, J.H.M.: Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. CABI, Oxon (2007)

    Google Scholar 

  56. Helser, T.E., Lai, H.N.: A Bayesian hierarchical meta-analysis of fish growth: with an example for north american largemouth bass, Micropterus salmoides. Ecol. Model. 178, 399–416 (2004)

    Article  Google Scholar 

  57. Katsanevakis, S., Maravelias, C.D.: Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish. Res. 9, 178–187 (2008)

    Google Scholar 

  58. Ratkowsky, D.A.: Nonlinear Regression Modelling: A Unified Approach. Marcel Dekker, New York (1983)

    MATH  Google Scholar 

  59. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley (2003)

  60. Eberhardt, L.L.: What should we do about hypothesis testing? J. Wildl. Manag. 67, 241–247 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Amiya Ranjan Bhowmick is supported by a research fellowship from the Council for Scientific and Industrial Research, Government of India. We are grateful to the editor-in-chief Dr. Rudi Podgornik and the two anonymous reviewers for their valuable comments and suggestions on the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Bhattacharya.

Appendices

Appendix A

Modified estimate of RGR For Gompertz law let us consider,

$$\begin{array}{@{}rcl@{}} X_{t_{1}} = X_{0}\exp{\left[\frac{b(1 - e^{-ct_{1}})}{c}\right]}\\ X_{t_{2}} = X_{0}\exp{\left[\frac{b(1 - e^{-ct_{2}})}{c}\right]}\\ X_{t_{3}} = X_{0}\exp{\left[\frac{b(1 - e^{-ct_{3}})}{c}\right]}\\ \end{array} $$

where \(t_{1}, t_{2}\) and \(t_{3}\) are consecutive time points. Then taking the ratio of the logarithm of \(\frac {X_{t_{2}}}{X_{t_{1}}}\) and \(\frac {X_{t_{3}}}{X_{t_{2}}}\) we obtain, \(\ln \left (\frac {X_{t_{2}}}{X_{t_{1}}}\right )/\ln \left (\frac {X_{t_{3}}}{X_{t_{2}}}\right )\) and this implie

$$c = \frac{1}{\Delta t}\ln\left[\frac{\ln(d_1)}{\ln(d_2)}\right],$$

where \(d_{1}\) and \(d_{2}\) are defined as in Section 2.4. Now putting this estimate into the equation of \(\frac {X_{t_{2}}}{X_{t_{1}}}\), we can get the estimate of b. Putting these estimates in the RGR equation for Gompertz law, which is \(be^{-ct_{1}}\), we can get the ISRP. Similarly for the logistic equation, the interval estimate for RGR can be calculated.

Appendix B

Proof of Theorem 1 We have,

$$\begin{array}{@{}rcl@{}} \frac{\Delta \mu_{l}}{ \Delta \mu_{e}} = \left[\frac{2(\alpha + \beta)}{\ln\left[\frac{(1+\alpha)(1+\beta)}{(1-\alpha)(1-\beta)}\right] }\right] \left[\frac{(X_{2}+X_{1})^{2}-(X_{2}-X_{1})^{2}}{(X_{2}+X_{1})^{2} - (X_{2}\beta - X_{1}\alpha)^{2}} \right] = m.n \end{array} $$

Lemma 2

m < 1, always true.

Proof

Let, \(\psi (\beta ) = \ln \left (\frac {1+\beta }{1-\beta }\right ) - 2\beta \Rightarrow \psi ' (\beta ) = \frac {2\beta ^{2}}{1-\beta ^{2}} > 0\) as \(0<\beta <1,\) which implies ψ(β) is an increasing function in β. This implies, ψ(β) > ψ(0) and so,

$$ \ln\left[\frac{1+\beta}{1-\beta}\right] - 2\beta > 0 $$
(21)

Similarly,

$$ \ln\left[\frac{1+\alpha}{1-\alpha}\right] - 2\alpha > 0 $$
(22)

Condition (21) and (22) implies \( \frac {2(\alpha +\beta )}{\ln \left [\frac {(1+\alpha )(1+\beta )}{(1-\alpha )(1-\beta )}\right ]} < 1 \Rightarrow m < 1 \)

Lemma 3

X 2(1 − β) > X 1(1 − α) ⇒ n < 1

Proof

n < 1 ⇒ | X 2X 1 | > | X 2 βX 1 α | ⇒ X 2(1 − β) > X 1(1 − α)

Lemma 2 and Lemma 3 imply that Δ μ e < Δ μ l if X 2(1 − β) > X 1(1 − α), i.e., if the lowest value of X 2 due to experimental errors is greater than that of X 1. Let us consider the following particular cases:

  1. 1.

    (α = β = 1)

    Then n = 1 ⇒ Δ μ e = Δ μ l

  2. 2.

    \(\frac {X_{2}}{X_{1}} > 1 > \frac {\alpha }{\beta }\)

    \(\Rightarrow X_{2}(1-\beta ) > X_{1}(1-\alpha ) \Rightarrow \Delta \mu _{e} < \Delta \mu _{l}\)

  3. 3.

    \(\frac {\alpha }{\beta } > \frac {X_{2}}{X_{1}} > 1\)

    \(\Rightarrow X_{1}\alpha - X_{2} > X_{2}\beta - X_{1} \Rightarrow X_{2}(1+\alpha ) > X_{1}(1+\beta ) \Rightarrow \Delta \mu _{e} < \Delta \mu _{l}\)

  4. 4.

    \(\frac {X_{2}}{X_{1}} > \frac {\alpha }{\beta } > 1\)

    \(\Rightarrow X_2-X_{2}\beta > X_{1} - X_{1}\alpha \Rightarrow X_{2}(1+\alpha ) > X_{1}(1+\beta ) \Rightarrow \Delta \mu _{e} < \Delta \mu _{l}\) but \(\frac {1}{2}\leq m \leq 1\) and \(n \geq 2\), then \(\Delta \mu _{e} > \Delta \mu _{l}\)

Lemma 4

\(\frac {\Delta \mu _{e}}{\Delta \mu _{p}} = \frac {\ln \left ( \frac {1+a(1+\Delta t)}{1+at}\right )}{\Delta t} < 1\)

Proof

We have, \(\frac {\Delta \mu _{e}}{\Delta \mu _{p}} = \frac {1}{\Delta t} \ln \left (\frac {1+a (t_{1} + \Delta t)}{1 + a t_{1}}\right ) = \frac {1}{\Delta t} \ln \left (1 + \frac {a t_{1}}{1+a t_{1}} + \frac {a \Delta t}{1 + a t_{1}}\right ) \) \(\approx \ln \left (1 + \frac {at_{1}}{1+at_{1}}\right ) (\text {when }\Delta \text {t small}) < \ln (2) < \ln (e) =1 \)

Lemma 5

\(\frac {\Delta \mu _{e}}{\Delta \mu _{g}} < 1\)

Proof

\(\frac {\Delta \mu _{e}}{\Delta \mu _{g}} = \frac {\exp {(c\Delta t)}-1}{\Delta t c \exp {(ct_{2})}}\) Let, \(\lambda (c) = \exp {(c\Delta t)} - \Delta t c \exp {(ct_{2})} \Rightarrow \lambda '(c) = \Delta t [\exp {(c\Delta t)} - (1+ct_{2})\exp {(ct_{2})} ]\).

Now, \(t_{2} > \Delta t\) (always true) \(\Rightarrow (1+ct_{2})\exp {(ct_{2})} > \exp {(c\Delta t)}\). As \(t_{2} >0\) is always true and \(c>0\) for Gompertz law, this implies, \(\lambda '(c) < 0 \Rightarrow \lambda (c)\downarrow c \Rightarrow \lambda (c) < \lambda (0) \Rightarrow \left (\frac {\exp {(c\Delta t)}-1}{\Delta t c \exp {(ct_{2})}}\right ) < 1 \Rightarrow \frac {\Delta \mu _{e}}{\Delta \mu _{g}} < 1\)

Lemma 6

Δμ glc Δμ e > 0

Proof

\(\Delta \mu _{glc} - \Delta \mu _{e} = \frac {1}{2\Delta t}\ln P\). To prove the lemma, we have to prove that, P > 1. We have, \((1-\alpha ) < (1+\alpha ) \Rightarrow \left ( a^{\frac {1}{d}} - [X_{1}(1-\alpha ) ]^{\frac {1}{d}}\right ) > \left ( a^{\frac {1}{d}} - [X_{1}(1+\alpha ) ]^{\frac {1}{d}}\right ) \Rightarrow \left (\frac {\left ( a^{\frac {1}{d}} - [X_{1}(1-\alpha ) ]^{\frac {1}{d}}\right )}{\left ( a^{\frac {1}{d}} - [X_{1}(1-\alpha ) ]x^{\frac {1}{d}}\right )}\right ) >1\). Similarly, \(\left (\frac {\left ( a^{\frac {1}{d}} - [X_{1}(1-\beta ) ]^{\frac {1}{d}}\right )}{\left ( a^{\frac {1}{d}} - [X_{1}(1+\beta ) ]^{\frac {1}{d}}\right )}\right ) >1\). This too implies that, P > 1. □

Now the proof of the theorem follows easily from Lemmas 2, 3, 4, 5 and 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, A.R., Chattopadhyay, G. & Bhattacharya, S. Simultaneous identification of growth law and estimation of its rate parameter for biological growth data: a new approach. J Biol Phys 40, 71–95 (2014). https://doi.org/10.1007/s10867-013-9336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9336-6

Keywords

Navigation