Skip to main content
Log in

Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interface

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In order to quantify the intrinsic dynamics associated with the tip of a GTP-cap under semi-confined conditions, such as those within a neuronal cone and at a kinetochore–microtubule interface, we propose a novel quantitative concept of critical nano local GTP-tubulin concentration (CNLC). A simulation of a rate constant of GTP-tubulin hydrolysis, under varying conditions based on this concept, generates results in the range of 0-420 s−1. These results are in agreement with published experimental data, validating our model. The major outcome of this model is the prediction of 11 random and distinct outbursts of GTP hydrolysis per single layer of a GTP-cap. GTP hydrolysis is accompanied by an energy release and the formation of discrete expanding zones, built by less-stable, skewed GDP-tubulin subunits. We suggest that the front of these expanding zones within the walls of the microtubule represent soliton-like movements of local deformation triggered by energy released from an outburst of hydrolysis. We propose that these solitons might be helpful in addressing a long-standing question relating to the mechanism underlying how GTP-tubulin hydrolysis controls dynamic instability. This result strongly supports the prediction that large conformational movements in tubulin subunits, termed dynamic transitions, occur as a result of the conversion of chemical energy that is triggered by GTP hydrolysis (Satarić et al., Electromagn Biol Med 24:255–264, 2005). Although simple, the concept of CNLC enables the formulation of a rationale to explain the intrinsic nature of the “push-and-pull” mechanism associated with a kinetochore–microtubule complex. In addition, the capacity of the microtubule wall to produce and mediate localized spatio-temporal excitations, i.e., soliton-like bursts of energy coupled with an abundance of microtubules in dendritic spines supports the hypothesis that microtubule dynamics may underlie neural information processing including neurocomputation (Hameroff, J Biol Phys 36:71–93, 2010; Hameroff, Cognit Sci 31:1035–1045, 2007; Hameroff and Watt, J Theor Biol 98:549–561, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janulevicius, A., van Pelt, J., van Ooyen, A.: Compartment volume influences microtubule dynamic instability: a model study. Biophys. J. 90, 788–798 (2006)

    Article  Google Scholar 

  2. Rezania, V., Tuszynski, J.A.: A stochastic model for microtubule dynamicity involving mixtures of tubulin isotypes. Int. J. Quantum Chem. 109, 3430–3440 (2009)

    Article  ADS  Google Scholar 

  3. Rieder, C.L., Salmon, E.D.: The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998)

    Article  Google Scholar 

  4. Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312, 237–242 (1984)

    Article  ADS  Google Scholar 

  5. O’Brien, E.T., Voter, W.A., Erickson, H.P.: GTP hydrolysis during microtubule assembly. Biochemistry 26, 4148–4156 (1987)

    Article  Google Scholar 

  6. Erickson, H.P., O’Brien, E.T.: Microtubule dynamic instability and GTP hydrolysis. Annu. Rev. Biophys. Biomol. Struct. 21, 145–166 (1992)

    Article  Google Scholar 

  7. Needleman, D.J., Groen, A., Ohi, R., Maresca, T., Mirny, L., Mitchison, T.: Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules. Mol. Biol. Cell. 21, 323–333 (2010)

    Article  Google Scholar 

  8. Schek, H.T., III, Hunt, A.J.: Microtubules: mechanical meets chemical. Biophys. J. 89, 2909–2910 (2005)

    Article  Google Scholar 

  9. Kamath, K., Oroudjev, E., Jordan, M.A.: Determination of microtubule dynamic instability in living cells. Methods Cell. Biol. 97, 1–14 (2010)

    Article  Google Scholar 

  10. Kapitein, L.C., Yau, K.W., Hoogenraad, C.C.: Microtubule dynamics in dendritic spines. Methods Cell. Biol. 97, 111–132 (2010)

    Article  Google Scholar 

  11. Kitamura, E., Tanaka, K., Kitamura, Y., Tanaka, T.U.: Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev. 21, 3319–3330 (2007)

    Article  Google Scholar 

  12. Suzuki, A., Hori, T., Nishino, T., Usukura, J., Miyagi, A., Morikawa, K., Fukagawa, T.: Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J. Cell Biol. 193, 125–140 (2011)

    Article  Google Scholar 

  13. Tolic-Norrelykke, I.M.: Push-me-pull-you: how microtubules organize the cell interior. Eur. Biophys. J. 37, 1271–1278 (2008)

    Article  Google Scholar 

  14. DeLuca, J.G.: Kinetochore–microtubule dynamics and attachment stability. Methods Cell Biol. 97, 53–79 (2010)

    Article  Google Scholar 

  15. Tabony, J.: Microtubules viewed as molecular ant colonies. Biol. Cell 98, 603–617 (2006)

    Article  Google Scholar 

  16. Duesberg, P.: Chromosomal chaos and cancer. Sci. Am. 296, 52–59 (2007)

    Article  ADS  Google Scholar 

  17. McEwen, B.F., Arena, J.T., Frank, J., Rieder, C.L.: Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high-voltage electron microscopic tomography. J. Cell Biol. 120, 301–312 (1993)

    Article  Google Scholar 

  18. Cleveland, D.W., Mao, Y., Sullivan, K.F.: Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003)

    Article  Google Scholar 

  19. Maddox, P., Straight, A., Coughlin, P., Mitchison, T.J., Salmon, E.D.: Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J. Cell Biol. 162, 377–382 (2003)

    Article  Google Scholar 

  20. Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986)

    Article  Google Scholar 

  21. Cheeseman, I.M., Desai, A.: Molecular architecture of the kinetochore–microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008)

    Article  Google Scholar 

  22. Maiato, H., DeLuca, J., Salmon, E.D., Earnshaw, W.C.: The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004)

    Article  Google Scholar 

  23. Clarke, P.R.: Cell biology. A gradient signal orchestrates the mitotic spindle. Science 309, 1334–1335 (2005)

    Google Scholar 

  24. Fuller, B.G.: Self-organization of intracellular gradients during mitosis. Cell Div. 5, 5 (2010)

    Article  Google Scholar 

  25. Dong, Y., Vanden Beldt, K.J., Meng, X., Khodjakov, A., McEwen, B.F.: The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9, 516–522 (2007)

    Article  Google Scholar 

  26. Oosawa, F., Asakura, S.: Thermodynamics of the Polymerization of Protein. Academic Press, London (1975)

    Google Scholar 

  27. Bergen, L.G., Borisy, G.G.: Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J. Cell Biol. 84, 141–150 (1980)

    Article  Google Scholar 

  28. Pantaloni, D., Carlier, M.F.: Involvement of guanosine triphosphate (GTP) hydrolysis in the mechanism of tubulin polymerization: regulation of microtubule dynamics at steady state by a GTP cap. Ann. New York Acad. Sci. 466, 496–509 (1986)

    Article  ADS  Google Scholar 

  29. Coue, M., Lombillo, V.A., McIntosh, J.R.: Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112, 1165–1175 (1991)

    Article  Google Scholar 

  30. Howard, J., Hyman, A.A.: Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003)

    Article  ADS  Google Scholar 

  31. Mitchison, T.J., Kirschner, M.W.: Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J. Cell Biol. 101, 755–765 (1985)

    Article  Google Scholar 

  32. Mitchison, T., Kirschner, M.: Microtubule assembly nucleated by isolated centrosomes. Nature 312, 232–237 (1984)

    Article  ADS  Google Scholar 

  33. Summers, K., Kirschner, M.W.: Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J. Cell Biol. 83, 205–217 (1979)

    Article  Google Scholar 

  34. Burns, R.G.: Kinetics of GTP hydrolysis during the assembly of chick brain MAP2-tubulin microtubule protein. Biochem. J. 277(Pt 1), 239–243 (1991)

    Google Scholar 

  35. Carlier, M.F., Pantaloni, D.: Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20, 1918–1924 (1981)

    Article  Google Scholar 

  36. Vandecandelaere, A., Brune, M., Webb, M.R., Martin, S.R., Bayley, P.M.: Phosphate release during microtubule assembly: what stabilizes growing microtubules? Biochemistry 38, 8179–8188 (1999)

    Article  Google Scholar 

  37. Rezania, V., Tuszynski, J.A.: A stochastic model for microtubule dynamicity involving mixtures of tubulin isotopes. Int. J. Quantum Chem. 109, 3430–3440 (2009)

    Article  ADS  Google Scholar 

  38. Frohlich, H.: Modern Biochemistry. Plenum Press, New York (1996)

    Google Scholar 

  39. Trpisova, B., Tuszynski, J.A.: Possible link between guanosine 5′ triphosphate hydrolysis and solitary waves in microtubules. Phys. Rev. E 55, 3288–3305 (1997)

    Article  ADS  Google Scholar 

  40. Satarić, M.V., Tuszynski, J.A., Zakula, R.B.: Kink-like excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E 48, 589–597 (1993)

    Article  ADS  Google Scholar 

  41. Satarić, M.V., Zakula, R.B., and Tuszynski, J.A.: A model of the energy transfer mechanisms in microtubules involving a single soliton. Nanobiology 1, 445–456 (1992)

    Google Scholar 

  42. Satarić, M.V., Satarić, B.M., Tuszynski, J.A.: Nonlinear model of microtubule dynamics. Electromagn. Biol. Med. 24, 255–264 (2005)

    Article  Google Scholar 

  43. Gardiner, J., Overall, R., Marc, J.: The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling. Synapse 65, 249–256 (2011)

    Article  Google Scholar 

  44. Sekulic, D.L., Satarić, B.M., Tuszynski, J.A., Satarić, M.V.: Nonlinear ionic pulses along microtubules. Eur. Phys. J. E Soft Matter 34, 1–11 (2011)

    Article  Google Scholar 

  45. Craddock, T.J., Tuszynski, J.A., Priel, A., Freedman, H.: Microtubule ionic conduction and its implications for higher cognitive functions. J. Integr. Neurosci. 9, 103–122 (2010)

    Article  Google Scholar 

  46. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Phys. Rev. E 77, 026110 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  47. Tirosh, R.: Ballistic protons and microwave-induced water solitons in bioenergetic transformations. Int. J. Molec. Sci. 7, 320–345 (2006)

    Article  Google Scholar 

  48. Pokorny, J., Jelinek, F., Trkal, V., Lamprecht, I., Holzel, R.: Vibrations in microtubules. Astrophys. Space Sci. 23, 171–179 (1997)

    Google Scholar 

  49. Chou, K.C., Zhang, C.T., Maggiora, G.M.: Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers 34, 143–153 (1994)

    Article  Google Scholar 

  50. Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theor. Biol. 66, 379–387 (1977)

    Article  Google Scholar 

  51. Hameroff, S.: The “conscious pilot”-dendritic synchrony moves through the brain to mediate consciousness. J. Biol. Phys. 36, 71–93 (2010)

    Article  Google Scholar 

  52. Hameroff, S.R.: The brain is both neurocomputer and quantum computer. Cognit. Sci. 31, 1035–1045 (2007)

    Article  Google Scholar 

  53. Hameroff, S.R., Watt, R.C.: Information processing in microtubules. J. Theor. Biol. 98, 549–561 (1982)

    Article  Google Scholar 

  54. Pantaloni, D., Carlier, M.F., Korn, E.D.: The interaction between ATP-actin and ADP-actin. A tentative model for actin polymerization. J. Biol. Chem. 260, 6572–6578 (1985)

    Google Scholar 

  55. Walker, R.A., O’Brien, E.T., Pryer, N.K., Soboeiro, M.F., Voter, W.A., Erickson, H.P., Salmon, E.D.: Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988)

    Article  Google Scholar 

  56. Voter, W.A., O’Brien, E.T., Erickson, H.P.: Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap. Cell Motil. Cytoskelet. 18, 55–62 (1991)

    Article  Google Scholar 

  57. Schek, H.T., III, Gardner, M.K., Cheng, J., Odde, D.J., Hunt, A.J.: Microtubule assembly dynamics at the nanoscale. Curr. Biol. 17, 1445–1455 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Professor Maxwell Bennett, AO (Professor of Neuroscience, University Chair and Scientific Director, Brain and Mind Research Institute, The University of Sydney) for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado A. Buljan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buljan, V.A., Holsinger, R.M.D., Hambly, B.D. et al. Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore–microtubule interface. J Biol Phys 39, 81–98 (2013). https://doi.org/10.1007/s10867-012-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9287-3

Keywords

Navigation