Skip to main content
Log in

Improved readout precision of the Bicoid morphogen gradient by early decoding

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Transcription factors (TFs) bind to specific DNA sequences to induce or repress gene expression. Expression levels can be tuned by changing TF concentrations, but the precision of such tuning is limited, since the fraction of time a TF occupies its binding site is subject to stochastic fluctuations. Bicoid (Bcd) is a TF that patterns the early Drosophila embryo by establishing an anterior-to-posterior concentration gradient and activating specific gene targets (“gap genes”) in a concentration-dependent manner. Recently, the Bcd gradient and its in-vivo diffusion were quantified in live embryos, raising a quandary: the precision by which the Bcd target genes are defined (one-cell resolution) appeared to exceed the physical limits set by the stochastic binding of Bcd to DNA. We hypothesize that early readout of Bcd could account for the observed precision. Specifically, we consider the possibility that gap genes begin to be expressed earlier than typically measured experimentally, at a time when the distance between the nuclei is large. At this time, the difference in Bcd concentration between adjacent nuclei is large, enabling better tolerance for measurement imprecision. We show that such early decoding can indeed increase the accuracy of gap-gene expression, and that the initial pattern can be stabilized during subsequent divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Driever, W., Nusslein-Volhard, C.: The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988)

    Article  Google Scholar 

  2. Driever, W., Thoma, G., Nusslein-Volhard, C.: Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–367 (1989)

    Article  ADS  Google Scholar 

  3. Struhl, G., Struhl, K., Macdonald, P.M.: The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259–1273 (1989)

    Article  Google Scholar 

  4. Burz, D.S., Rivera-Pomar, R., Jackle, H., Hanes, S.D.: Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J. 17, 5998–6009 (1998)

    Article  Google Scholar 

  5. Lebrecht, D., Foehr, M., Smith, E., Lopes, F.J., Vanario-Alonso, C.E., Reinitz, J., Burz, D.S., Hanes, S.D.: Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 102, 13176–13181 (2005)

    Article  ADS  Google Scholar 

  6. Burz, D.S., Hanes, S.D.: Isolation of mutations that disrupt cooperative DNA binding by the Drosophila bicoid protein. J. Mol. Biol. 305, 219–230 (2001)

    Article  Google Scholar 

  7. Ma, X., Yuan, D., Diepold, K., Scarborough, T., Ma, J.: The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. Development 122, 1195–1206 (1996)

    Google Scholar 

  8. Yuan, D., Ma, X., Ma, J.: Sequences outside the homeodomain of bicoid are required for protein–protein interaction. J. Biol. Chem. 271, 21660–21665 (1996)

    Article  Google Scholar 

  9. Capovilla, M., Eldon, E.D., Pirrotta, V.: The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. Development 114, 99–112 (1992)

    Google Scholar 

  10. Eldon, E.D., Pirrotta, V.: Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. Development 111, 367–378 (1991)

    Google Scholar 

  11. Gaul, U., Jackle, H.: Analysis of maternal effect mutant combinations elucidates regulation and function of the overlap of hunchback and Krüppel gene expression in the Drosophila blastoderm embryo. Development 107, 651–662 (1989)

    Google Scholar 

  12. Hoch, M., Gerwin, N., Taubert, H., Jackle, H.: Competition for overlapping sites in the regulatory region of the Drosophila gene Krüppel. Science 256, 94–97 (1992)

    Article  ADS  Google Scholar 

  13. Hoch, M., Schroder, C., Seifert, E., Jackle, H.: Cis-acting control elements for Krüppel expression in the Drosophila embryo. EMBO J. 9, 2587–2595 (1990)

    Google Scholar 

  14. Hulskamp, M., Pfeifle, C., Tautz, D.: A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature 346, 577–580 (1990)

    Article  ADS  Google Scholar 

  15. Jackle, H., Tautz, D., Schuh, R., Seifert, E., Lehmann, R.: Cross-regulatory interactions among the gap genes of Drosophila. Nature 324, 668–670 (1986)

    Article  ADS  Google Scholar 

  16. Kraut, R., Levine, M.: Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. Development 111, 611–621 (1991)

    Google Scholar 

  17. Treisman, J., Desplan, C.: The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters. Nature 341, 335–337 (1989)

    Article  ADS  Google Scholar 

  18. Houchmandzadeh, B., Wieschaus, E., Leibler, S.: Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802 (2002)

    Article  ADS  Google Scholar 

  19. Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W.: Probing the limits to positional information. Cell 130, 153–164 (2007)

    Article  Google Scholar 

  20. Tostevin, F., ten Wolde, P.R., Howard, M.: Fundamental limits to position determination by concentration gradients. PLoS Comput Biol 3, e78 (2007)

    Article  ADS  Google Scholar 

  21. Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    Article  ADS  Google Scholar 

  22. Tamari, Z., Barkai, N., Fouxon, I.: Physical aspects of precision in genetic regulation. J. Biol. Phys. 37, 227–238 (2010). doi:10.1007/s10867-010-9208-2

    Google Scholar 

  23. Knipple, D.C., Seifert, E., Rosenberg, U.B., Preiss, A., Jackle, H.: Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos. Nature 317, 40–44 (1985)

    Article  ADS  Google Scholar 

  24. Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., Dostatni, N.: The time to measure positional information: maternal hunchback is required for the synchrony of the bicoid transcriptional response at the onset of zygotic transcription. Development 137, 2795–2804 (2010)

    Article  Google Scholar 

  25. Pritchard, D.K., Schubiger, G.: Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev. 10, 1131–1142 (1996)

    Article  Google Scholar 

  26. Jaeger, J., Sharp, D.H., Reinitz, J.: Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mech. Dev. 124, 108–128 (2007)

    Article  Google Scholar 

  27. Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., Tank, D.W.: Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–152 (2007)

    Article  Google Scholar 

  28. Bergmann, S., Tamari, Z., Schejter, E., Shilo, B.Z., Barkai, N.: Re-examining the stability of the bicoid morphogen gradient. Cell 132, 15–17 (2008)

    Article  Google Scholar 

  29. Saunders, T., Howard, M.: When it pays to rush: interpreting morphogen gradients prior to steady-state. Phys. Biol. 6, 046020 (2009)

    Article  Google Scholar 

  30. Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  31. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 71, 2340–2361 (1977)

    Article  Google Scholar 

  32. Doncic, A., Elf, J.: Simulating Intracellular Stochastic Reaction-Diffusion Systems. Uppsala University UPTEC X:02 043 (2002)

  33. Hattne, J., Elf, J.: The Algorithms and Implementation of MesoRD. Uppsala University, Department of Information Technology, Scientific Computing (2006)

  34. von Smoluchowski, M.: Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)

    ADS  Google Scholar 

  35. Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.Z., Barkai N.: Pre-steady-state decoding of the bicoid morphogen gradient. PLoS. Biol. 5, e46 (2007)

    Article  Google Scholar 

  36. de Lachapelle, A.M., Bergmann, S.: Precision and scaling in morphogen gradient read-out. Mol. Syst. Biol. 6, 351 (2010)

    Google Scholar 

  37. Driever, W., Nusslein-Volhard, C.: The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138–143 (1989)

    Article  ADS  Google Scholar 

  38. Hoch, M., Seifert, E., Jackle, H.: Gene expression mediated by cis-acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback. EMBO J. 10, 2267–2278 (1991)

    Google Scholar 

  39. Simpson-Brose, M., Treisman, J., Desplan, C.: Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila. Cell 78, 855–865 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, the Israel Science Foundation, and by the Helen and Martin Kimmel Award for Innovative Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naama Barkai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamari, Z., Barkai, N. Improved readout precision of the Bicoid morphogen gradient by early decoding. J Biol Phys 38, 317–329 (2012). https://doi.org/10.1007/s10867-011-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9250-8

Keywords

Navigation