Skip to main content

Advertisement

Log in

Dynamics of hydrocephalus: a physical approach

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

As brain ventricles lose their ability to regulate the cerebrospinal fluid (CSF) pressure, serious brain conditions collectively named hydrocephalus can appear. By modelling ventricular dynamics with the laws of physics, dynamical instabilities are evidenced, caused by either CSF transport dysregulations or abnormal properties of the elasticity of the ependyma. We show that these instabilities would lead, in most cases, to dilation of the ventricles, establishing a close connection to hydrocephalus, or in some other cases to a ventricular contraction as observed in the slit ventricle syndrome. Signs seem to indicate the possibility of phase transitions occurring as a result of these instabilities, which might have important clinical consequences, such as the inability to recover a healthy state. Even so, our dynamical approach could allow the development of a unified view of these complex intracranial conditions along with a classification that might be clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Greitz, D.: Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg. Rev. 27, 145–165 (2004)

    Google Scholar 

  2. Balédent, O., et al.: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest. Radiol. 39(1), (2004)

  3. Sweetman, B., Linninger, A.A.: Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39(1), 484–96 (2011)

    Article  Google Scholar 

  4. Mori, K.: Current concept of hydrocephalus: evolution of new classifications. Child’s Nerv. Syst. 11, 523–532 (1995)

    Article  Google Scholar 

  5. Fin, L., Grebe, R.: Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of Sylvius. Comput. Methods Biomech. Biomed. Eng. 6(3), 163–70 (2003)

    Article  Google Scholar 

  6. Milhorat, T.H.: Experimental hydrocephalus. A technique for producing obstructive hydrocephalus in the monkey. J. Neurosurg. 32, 385–389 (1970)

    Article  Google Scholar 

  7. Hakim, S., Adams, R.D.: The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. J. Neurol. Sci. 2, 307–327 (1965)

    Article  Google Scholar 

  8. Hakim, C.A., Hakim, R., Hakim, S.: Normal pressure hydrocephalus. Neurosurg. Clin. N. Am. 36(4), 761–772 (2001)

    Google Scholar 

  9. Marmarou, A., Schulman, K., LaMorgese, J.: Compartmental analysis of compliance and outflow resistance of cerebrospinal fluid system. J. Neurosurg. 43, 523–534 (1975)

    Article  Google Scholar 

  10. Ambarki, K., et al.: A new lumped-parameter model of craniospinal hydrodynamics during cardiac cycle in healthy volunteers. IEEE Trans. Biomed. Eng. 54(3), 483–491 (2007)

    Article  Google Scholar 

  11. Wirth, B.: A mathematical model for hydrocephalus. M.Sc. Thesis, University of Oxford (2005)

  12. Nagashima, T., et al.: Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21(6), 898–904 (1987)

    Article  Google Scholar 

  13. Drake, J.M., et al.: Realistic simple mathematical model of brain biomechanics for computer simulation of hydrocephalus and other brain abnormalities. Can. J. Neurol. Sci. 23, S5 (1996)

    Google Scholar 

  14. Tenti, G., Sivaloganathan, S., Drake, J.M.: Brain biomechanics: Steady-state consolidation theory of hydrocephalus. Math. Q. 7(1), 111–124 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Bouzerar, R., et al.: Ventricular dilation as an instability of intracranial dynamics. Phys. Rev. E 72, 51912 (2005)

    Article  ADS  Google Scholar 

  16. Takei, F., Hirano, A., Shapiro, K., Kohn, I.J.: New ultrastructural changes of the ependyma in experimental hydrocephalus. Acta Neuropathol. 73, 400–402 (1987)

    Article  Google Scholar 

  17. Milhorat, T.H.: Choroid plexus and CSF production. Science 166, 1514–1516 (1969)

    Article  ADS  Google Scholar 

  18. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch., C 28, 693–703 (1973)

    Google Scholar 

  19. De Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 3 (1985)

    Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Courses of Theoretical Physics, vol. 7. Pergamon, Oxford (1970)

  21. David, F.: Geometry and field theory of random surfaces and membranes. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces. World Scientific, New York (2004)

    Google Scholar 

  22. Willmore, T.J.: Riemannian Geometry. Oxford Science, Oxford (1993)

    MATH  Google Scholar 

  23. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  24. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2002)

    MATH  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Courses of Theoretical Physics, vol. 7. Pergamon, Oxford (1982)

  26. Griffith, M.D., et al.: Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622, 291–320 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Womersley, J.R.: Method for the calculation of velocity, rate flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3), 553–563 (1955)

    Google Scholar 

  28. Balédent, O., et al.: Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color Doppler. J. Magn. Reson. Imaging 24(5), 995–1004 (2006)

    Article  Google Scholar 

  29. Arfken, G.: Nonhomogeneous equation Green’s functions. In: Arfken, G. (ed.) Mathematical Methods for Physicists, 3rd ed. Academic, Orlando (1985)

    Google Scholar 

  30. Sourisse, A.: Propriétés spectrales de l’opérateur de Dirac avec un champ magnétique intense. Ph.D. Thesis, University of Nantes (2006)

  31. Rekate, H.L.: The slit ventricle syndrome: advances based on technology and understanding. Pediatr. Neurosurg. 40, 259–263 (2004)

    Article  Google Scholar 

  32. Aimedieu, P., Grebe, R.: Tensile strength of cranial pia mater: preliminary results. J. Neurosurg. 100(1), 11–114 (2004)

    Google Scholar 

  33. Sorek, S., Bear, J., Karni, Z.: Resistances and compliances of a compartmental model of the cerebrovascular system. Ann. Biomed. Eng. 17, 1–12 (1989)

    Article  Google Scholar 

  34. Kratochvíl, A., Hrncír, E.: Correlations between the cerebrospinal fluid surface tension value and 1. Concentration of total proteins 2. Number of cell elements. Gen. Physiol. Biophys. 21, 47–53 (2002)

    Google Scholar 

  35. Czosnyka, M., et al.: Cerebrospinal fluid dynamics. Physiol. Meas. 25(5), R51–76 (2004)

    Google Scholar 

  36. Bergsneider, M., et al.: What we don’t (but should) know about hydrocephalus. J. Neurosurg. 104, 157–159 (2006)

    Article  Google Scholar 

  37. Klein, O.: Hydrocéphalie. Mesure du débit de liquide cérébrospinal chez l’adulte hydrocéphale porteur d’une dérivation ventriculaire externe. Ph.D. Thesis, University of Nancy I (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issyan Tekaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzerar, R., Tekaya, I., Bouzerar, R. et al. Dynamics of hydrocephalus: a physical approach. J Biol Phys 38, 251–266 (2012). https://doi.org/10.1007/s10867-011-9239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9239-3

Keywords

Navigation