Skip to main content
Log in

Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aranda, S., Riske, K.A., Lipowsky, R., Dimova, R.: Morphological transitions of vesicles induced by AC electric fields. Biophys. J. 95, L19–L21 (2008)

    Article  Google Scholar 

  2. Polk, C., Postow, E. (eds.): Handbook of Biological Effects of Electromagnetic Fields, 2nd edn. CRC, Boca Raton (1996)

    Google Scholar 

  3. Zimmermann, U., Neil, G.A. (eds.): Electromanipulation of Cells. CRC, Boca Raton (1996)

    Google Scholar 

  4. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  5. Zimmerman, U., Friedrich, U., Mussauer, H., Gessner, P., Hämel, K., Sukhorukov, V.: Electromanipulation of mammalian cells: fundamentals and application. IEEE Trans. Plasma Sci. 28, 72–82 (2000)

    Article  ADS  Google Scholar 

  6. Gimsa, J.: A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54(1), 23–31 (2001)

    Article  Google Scholar 

  7. Dimova, R., Riske, K.A., Aranda, S., Bezlyepkina, N., Knorr, R.L., Lipowsky, R.: Giant vesicles in electric fields. Soft Matter 3, 817–827 (2007)

    Article  Google Scholar 

  8. Dimova, R., Bezlyepkina, N., Domange Jordö, M., Knorr, R.L., Riske, K.A., Staykova, M., Vlahovska, P.M., Yamamoto, T., Yang, P., Lipowsky, R.: Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5, 3201–3212 (2009)

    Article  Google Scholar 

  9. Schwan, H.P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)

    Google Scholar 

  10. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch., C 28, 693–703 (1973)

    Google Scholar 

  11. Helfrich, W.: Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch., C 29, 182–183 (1974)

    Google Scholar 

  12. Bryant, G., Wolfe, J.: Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J. Membr. Biol. 96, 129–139 (1987)

    Article  Google Scholar 

  13. Winterhalter, M., Helfrich, W.: Deformation of spherical vesicles by electric field. J. Colloid Interface Sci. 122, 583–586 (1988)

    Article  Google Scholar 

  14. Harbich, W., Helfrich, W.: Alignment and opening of giant lecithin vesicles by electric fields. Z. Naturforsch., A 34, 1063–1065 (1979)

    ADS  Google Scholar 

  15. Mitov, M.D., Méléard, P., Winterhalter, M., Angelova, M.I., Bothorel, P.: Electric-field-dependent thermal fluctuations of giant vesicles. Phys. Rev. E 48(1), 628–631 (1993)

    Article  ADS  Google Scholar 

  16. Peterlin, P., Svetina, S., Žekš, B.: The frequency dependence of phospolipid vesicle shapes in an external electic field. Pflügers Arch. Eur. J. Physiol. 439, R139–R140 (2000)

    Article  Google Scholar 

  17. Hyuga, H., Kinosita, Jr., K., Wakabayashi, N.: Transient and steady-state deformations of a vesicle with an insulating membrane in response to step-function or alternating electric fields. Jpn. J. Appl. Phys. 30(10), 2649–2656 (1991)

    Article  ADS  Google Scholar 

  18. Hyuga, H., Kinosita, Jr., K., Wakabayashi, N.: Steady-state deformation of a vesicle in alternating electric fields. Bioelectrochem. Bioenerg. 32, 15–25 (1993)

    Article  Google Scholar 

  19. Landau, L.D., Lifshitz, E.M., Pitaevskiĭ, L.P.: Electrodynamics of continuous media. In: Course of Theoretical Physics, vol. 8, 2nd edn. Butterworth-Heineman, Oxford (1984)

    Google Scholar 

  20. Nörtemann, K., Hilland, J., Kaatze, U.: Dielectric properties of aqueous NaCl solutions at microwave frequencies. J. Phys. Chem., A 101, 6864–6869 (1997)

    Article  Google Scholar 

  21. Turcu, I., Lucaciu, C.M.: Dielectrophoresis: a spherical shell model. J. Phys., A, Math. Gen. 22, 985–993 (1989)

    Article  ADS  Google Scholar 

  22. Foster, K.R., Sauer, F.A., Schwan, H.P.: Electrorotation and levitation of cells and colloidal particles. Biophys. J. 63(1), 180–190 (1992)

    Article  ADS  Google Scholar 

  23. Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Article  Google Scholar 

  24. Angelova, M.I., Soléau, S., Méléard, P., Faucon, J.F., Bothorel, P.: Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Colloid & Polym. Sci. 89, 127–131 (1992)

    Article  Google Scholar 

  25. Peterlin, P., Arrigler, V.: Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles. Colloids Surf., B 64, 77–87 (2008)

    Article  Google Scholar 

  26. Sevšek, F., Sukharev, S., Svetina, S., Žekš, B.: The shapes of phospholipid vesicles in electric field as determined by video microscopy. Stud. Biophys. 138, 143–146 (1990)

    Google Scholar 

  27. Antonova, K., Vitkova, V., Mitov, M.D.: Deformation of giant vesicles in AC electric fields-Dependence of the prolate-to-oblate transition frequency on vesicle radius. EPL 89, 38004 (2010). doi:10.1209/0295-5075/89/38004

  28. Sukhorukov, V.L., Meedt, G., Kürscher, M., Zimmerman, U.: A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane. J. Electrost. 50, 191–204 (2001)

    Article  Google Scholar 

  29. Ambjörnsson, T., Mukhopadhyay, G.: Dipolar response of an ellipsoidal particle with an anisotropic coating. J. Phys. A, Math. Gen. 36, 10,651–10,665 (2003)

    Article  MATH  ADS  Google Scholar 

  30. Ko, Y.T.C., Huang, J.P., Yu, K.W.: The dielectric behaviour of single-shell spherical cells with a dielectric anisotropy in the shell. J. Phys., Condens. Matter 16, 499–509 (2004)

    Article  ADS  Google Scholar 

  31. Simeonova, M., Gimsa, J.: Dielectric anisotropy, volume potential anomalies and the persistent Maxwellian equivalent body. J. Phys., Condens. Matter 17, 7817–7831 (2005)

    Article  ADS  Google Scholar 

  32. Peterlin, P., Svetina, S., Žekš, B.: The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer. J. Phys., Condens. Matter 19, 136 220 (2007)

    Article  ADS  Google Scholar 

  33. Vlahovska, P.M., Serral Gracià, R., Aranda-Espinoza, S., Dimova, R.: Electrohydrodynamic model of vesicle deformation in alternating electric field. Biophys. J. 96, 4789–4803 (2009)

    Article  ADS  Google Scholar 

  34. Kummrow, M., Helfrich, W.: Deformation of giant lipid vesicles by electric fields. Phys. Rev. A 44(12), 8356–8360 (1991)

    Article  ADS  Google Scholar 

  35. Niggemann, G., Kummrow, M., Helfrich, W.: The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. J. Phys. II France 5, 413–425 (1995)

    Article  Google Scholar 

  36. Pott, T., Bouvrais, H., Méléard, P.: Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 154, 115–119 (2008)

    Article  Google Scholar 

  37. Horger, K.S., Estes, D.J., Capone, R., Mayer, M.: Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J. Am. Chem. Soc. 131, 1810–1819 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. S. Svetina and Prof. B. Žekš for numerous helpful discussions and V. Arrigler for the help with vesicle preparation. This work has been supported by the Slovenian Research Agency through grant J3-2268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Peterlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlin, P. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field. J Biol Phys 36, 339–354 (2010). https://doi.org/10.1007/s10867-010-9187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9187-3

Keywords

Navigation