Skip to main content
Log in

Chaos game representation of human pallidal spike trains

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Many studies have demonstrated the presence of scale invariance and long-range correlation in animal and human neuronal spike trains. The methodologies to extract the fractal or scale-invariant properties, however, do not address the issue as to the existence within the train of fine temporal structures embedded in the global fractal organisation. The present study addresses this question in human spike trains by the chaos game representation (CGR) approach, a graphical analysis with which specific temporal sequences reveal themselves as geometric structures in the graphical representation. The neuronal spike train data were obtained from patients whilst undergoing pallidotomy. Using this approach, we observed highly structured regions in the representation, indicating the presence of specific preferred sequences of interspike intervals within the train. Furthermore, we observed that for a given spike train, the higher the magnitude of its scaling exponent, the more pronounced the geometric patterns in the representation and, hence, higher probability of occurrence of specific subsequences. Given its ability to detect and specify in detail the preferred sequences of interspike intervals, we believe that CGR is a useful adjunct to the existing set of methodologies for spike train analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997)

    Google Scholar 

  2. Ronacher, B., Franz, A., Wohlgemuth, S., Hennig, R.M.: Variability of spike trains and the processing of temporal patterns of acoustic signals—problems, constraints, and solutions. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190, 257–277 (2004)

    Article  Google Scholar 

  3. Mandelbrot, B., Gerstein, G.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–67 (1964)

    Article  Google Scholar 

  4. Teich, M.C.: Fractal character of the auditory neural spike train. IEEE Trans. Biomed. Eng. 36, 150–160 (1989)

    Article  ADS  Google Scholar 

  5. Gisiger, T.: Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol. Rev. Camb. Philos. Soc. 76, 161–209 (2001)

    Article  Google Scholar 

  6. Havlin, S., Buldyrev, S.V., Bunde, A., Goldberger, A.L., Ivanov, P.Ch., Peng, C.K., Stanley, H.E.: Scaling in nature: from DNA through heartbeats to weather. Physica A 273, 46–69 (1999)

    Article  ADS  Google Scholar 

  7. Rasouli, G., Rasouli, M., Lenz, F.A., Verhagen, L., Borrett, D.S., Kwan, H.C.: Fractal characteristic of human Parkinsonian neuronal spike trains. Neuroscience 139, 1153–1158 (2006)

    Article  Google Scholar 

  8. Feder, J.: Fractals, pp. 149–183. Plenum, New York (1988)

    MATH  Google Scholar 

  9. Jeffrey, H.J.: Chaos Game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  10. Oliver, J.L., Bernaola-Galvani, P., Guerrero-Garcia, J., Roman-Roldan, R.: Entropic profiles of DNA sequences through chaos-game-derived images. J. Theor. Biol. 160, 457–470 (1993)

    Article  Google Scholar 

  11. Wang, Y., Hill, K., Singh, S., Kari, L.: The spectrum of genomic signatures: from dinucleotides to chaos game representation. Gene 346, 173–185 (2005)

    Article  Google Scholar 

  12. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signatures: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol. 16, 1391–1399 (1999)

    Google Scholar 

  13. Basu, S., Archana, P., Dutta, C., Das, J.: Chaos game representation of proteins. J. Mol. Graph. Model 15, 279–289 (1997)

    Article  Google Scholar 

  14. Mandir, A.S., Rowland, L.H., Dougherty, P.M., Lenz, F.A.: Microelectrode recording and stimulation techniques during stereotactic procedures in the thalamus and pallidum. Adv. Neurol. 74, 159–65 (1997)

    Google Scholar 

  15. Suarez, J.L., Verhagen Metman, L., Reich, S.G., Dougherty, P.M., Hallett, M., Lenz, F.A.: Pallidotomy for hemiballismus: efficacy and characteristics of neuronal activity. Ann. Neurol. 42, 807–810 (1997)

    Article  Google Scholar 

  16. Kempster, P.A., Iansek, R., Larmour, I.: Intermittent subcutaneous apomorphine injection treatment for parkinsonian motor oscillations. Aust. N. Z. J. Med. 21, 314–318 (1991)

    Google Scholar 

  17. Lozano, A.M., Hutchison, W., Kiss, Z., Tasker, R.R., Davis, K., Dostrovsky, J.O.: Methods for microelectrode guided posteroventral pallidotomy. J. Neurosurg. 84, 194–202 (1996)

    Article  Google Scholar 

  18. Vitek, J.L., Bakay, R.A., Hashimoto, T., Kaneoke, Y., Mewes, K., Zhang, J.Y., Rye, D., Starr, P., Baron, M., Turner, R., DeLong, M.R.: Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J. Neurosurg. 88, 1027–1043 (1998)

    Article  Google Scholar 

  19. Simonsen, I., Hansen, A.: Determination of scaling exponent using wavelet transform. Phys. Rev. E 58, 2779–2787 (1998)

    Article  ADS  Google Scholar 

  20. Jeffrey, H.J.: Chaos game visualization of sequences. Comput. Graph 16, 25–33 (1992)

    Article  Google Scholar 

  21. Almeida, J.S., Carrico, J.A., Maretzek, A., Noble, P.A., Fletcher, M.: Analysis of genomic sequences by chaos game representation. Bioinformatics 17, 429–437 (1997)

    Article  Google Scholar 

  22. Eckmann, J.P., Kamphorst Oliffson, S., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  23. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kaluzny, P., Tarnecki, R.: Recurrence plot of spike trains. Biol. Cybern. 68, 527–534 (1993)

    Article  Google Scholar 

  25. Schiff, S.J., Sauer, T., Chang, T.: Discriminating deterministic versus stochastic dynamics in neuronal activity. Integr. Physiol. Behav. Sci. 29, 246–261 (1994)

    Article  Google Scholar 

  26. Gerstein, G.L.: Searching for significance in spatio-temporal firing patterns. Acta Neurobiol. Exp. (Wars) 64, 203–207 (2004)

    Google Scholar 

  27. Goldberger, A.L.: The Autonomic Nervous System. World Health Organization, Geneva (1999)

    Google Scholar 

  28. Peng, C.K., Hausdorff, J.M., Goldberger, A.L.: Fractal mechanisms in neuronal control: human heartbeat and gait dynamics in health and disease. In: Walleczek, J. (ed.) Nonlinear Dynamics, Self-organization and Biomedicine, pp. 66–96. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgements

We thank the three reviewers for their comments and suggestions. This research was supported by grants from the Toronto East General Hospital Research Foundation and the NIH to FAL (RO1:NS38493 and RO1:40059).

Authors’ contributions

MR was the primary author and, along with GR, wrote the programs and analysed the results. FAL, DSB, LV and HCK contributed to the writing of the paper. In addition, FAL performed the surgeries and acquired the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahta Rasouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasouli, M., Rasouli, G., Lenz, F.A. et al. Chaos game representation of human pallidal spike trains. J Biol Phys 36, 197–205 (2010). https://doi.org/10.1007/s10867-009-9172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9172-x

Keywords

Navigation