Skip to main content
Log in

Initial Development and Characterization of PLGA Nanospheres Containing Ropivacaine

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Local anesthetics are able to induce pain relief by binding to the sodium channels of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Ropivacaine (RVC) is an amino amide, enantiomerically pure, local anesthetic largely used in surgical procedures, which present physico-chemical and therapeutic properties similar to those of bupivacaine but decreased toxicity and motor blockade. The present work focuses on the preparation and characterization of nanospheres containing RVC; 0.25% and 0.50% RVC were incorporated in poly(d,l-lactide-co-glycolide (PLGA) 50:50) nanospheres (PLGA-NS), prepared by the nanoprecipitation method. Characterization of the nanospheres was conducted through the measurement of pH, particle size, and zeta potential. The pH of the nanoparticle system with RVC was 6.58. The average diameters of the RVC-containing nanospheres was 162.7 ± 1.5 nm, and their zeta potentials were negative, with values of about −10.81 ± 1.16 mV, which promoted good stabilization of the particles in solution. The cytotoxicity experiments show that RVC-loaded PLGA-NS generate a less toxic formulation as compared with plain RVC. Since this polymer drug-delivery system can effectively generate an even less toxic RVC formulation, this study is fundamental due to its characterization of a potentially novel pharmaceutical form for the treatment of pain with RVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille, B.: Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor interaction. J. Gen. Physiol. 69, 497–575 (1997). doi:10.1085/jgp.69.4.497

    Article  Google Scholar 

  2. Cederholm, I.: Preliminary risk-benefit analisys of ropivacaine in labour and following surgery. Drug Safety 16, 391–402 (1997)

    Article  Google Scholar 

  3. Knudsen, J., Suurküla, M.B., Bolmberg, S., Sjövall, J., Edvardsson, N.: Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br. J. Anaesth. 78, 507–514 (1997)

    Google Scholar 

  4. Dony, P., Dewinde, V., Vanderick, B., Cuignet, O., Gautier, P., Legrand, E., Lavand’homme, P., De Kock, M.: The comparative toxicicty of ropivacaine and bupivacaine at equipotent doses in rats. Anesth. Analg. 91, 1489–1492 (2000). doi:10.1097/00000539-200012000-00036

    Article  Google Scholar 

  5. Wang, R.D., Dangler, L.A., Greengrass, R.A.: Update on ropivacaine. Expert Opin. Pharmacother. 2, 2051–2063 (2001). doi:10.1517/14656566.2.12.2051

    Article  Google Scholar 

  6. Mather, L., Chang, D.H.T.: Cardiotoxicity with modern local anesthetics: is there a safer choice? Drugs 61, 333–342 (2001). doi:10.2165/00003495-200161030-00002

    Article  Google Scholar 

  7. McClellan, K., Faulds, D.: Ropivacaine: an update of its use in regional anesthesia. Drugs 60, 1065–1093 (2001). doi:10.2165/00003495-200060050-00007

    Article  Google Scholar 

  8. Cruz, L., Soares, L.U., Costa, T.D., Mezzalira, G., Silveira, N.P., Guterres, S.S., Pohlmann, A.R.: Diffusion and mathematical modeling of release profiles from nanocarriers. Int. J. Pharm. 313, 198–205 (2006). doi:10.1016/j.ijpharm.2006.01.035

    Article  Google Scholar 

  9. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Dudziski, W.E.: Biodegradable polymerica nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001). doi:10.1016/S0168-3659(00)00339-4

    Article  Google Scholar 

  10. Talja, M., Valimaa, T., Tamela, T., Petas, A., Tormala, P.: Bioabsorbable and biodegradable stents in urology. J. Endourol. 11, 391–397 (1997)

    Google Scholar 

  11. Athanasiou, K.A., Niederauer, G.G., Agrawal, C.M.: Sterilzation, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996). doi:10.1016/0142-9612(96)85754-1

    Article  Google Scholar 

  12. Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S.: Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55, 1–4 (1989). doi:10.1016/0378-5173(89)90281-0

    Article  Google Scholar 

  13. Avgoustakis, K., Beletsi, A., Panagi, Z., Kleptsanis, P., Livaniou, E., Evangelatos, G., Ithakissios, D.S.: Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. Int. J. Pharm. 259, 115–127 (2003). doi:10.1016/S0378-5173(03)00224-2

    Article  Google Scholar 

  14. Michalowski, C.B., Guterres, S.S., Dalla Costa, T.: Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J. Pharm. Biomed. Anal. 35, 1093–1100 (2004). doi:10.1016/j.jpba.2004.04.002

    Article  Google Scholar 

  15. Mallin, M., Vainio, H., Karjalainem, K., Seppala, J.: Biodegradable lactone copolymers. II. Hydrolytics study of caprolactone and lactide copolymers. J. Appl. Polym. Sci. 59, 1289–1298 (1996). doi:10.1002/(SICI)1097-4628(19960222)59:8<1289::AID-APP12>3.0.CO;2-1

    Article  Google Scholar 

  16. Pohlmann, A.R., Weiss, V., Mertins, O., Silveira, N.P., Guterres, S.S.: Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur. J. Pharm. Sci. 16, 305–312 (2002). doi:10.1016/S0928-0987(02)00127-6

    Article  Google Scholar 

  17. Muller, C.R., Haas, S.E., Bassani, V.L., Guterres, S.S., Fessi, H., Peralba, M.C.R., et al: Degradação e estabilização do diclofenaco em nanocápsulas poliméricas. Quim. Nova 27, 555–560 (2004). doi:10.1590/S0100-40422004000400008

    Google Scholar 

  18. Govender, T., Riley, T., Ehtezazi, T., Garnett, M.C., Solnik, S., Illum, L., Davis, S.S.: Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm. 199, 95–110 (2000). doi:10.1016/S0378-5173(00)00375-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Fernandes Fraceto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, C.M., de Matos, A.P., de Lima, R. et al. Initial Development and Characterization of PLGA Nanospheres Containing Ropivacaine. J Biol Phys 33, 455–461 (2007). https://doi.org/10.1007/s10867-008-9094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9094-z

Keywords

Navigation