Skip to main content
Log in

Dynamic Simulation of Active/Inactive Chromatin Domains

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA–DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8–20 attractive segments per 1 Mbp domain produces rosettes of 300–800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Schiessel, H.: The Physics of Chromatin, J. Phys.: Cond. Matter 15 (2003), 699–774.

    Article  ADS  Google Scholar 

  • Wedemann, G. and Langowski, J.: Computer Simulation of the 30-Nanometer Chromatin Fiber, Biophys. J. 82 (2002), 2847–2859.

    Google Scholar 

  • Beard, D.A. and Schlick, T.: Computational Modeling Predicts the Structure and Dynamics of Chromatin Fiber, Structure 9 (2001), 105–114.

    Google Scholar 

  • Bednar, J., Horowitz, R.A., Grigoryev, S.A., Carruthers, L.M., Hansen, J.C., Koster, A.J. and Woodcock, C.L.: Nucleosomes, Linker DNA, and Linker Histone Form a Unique Structural Motif that Directs the Higher-Order Folding and Compaction of Chromatin, Proc. Natl. Acad. Sci. USA 95 (1998), 14173–14178.

    Article  ADS  Google Scholar 

  • Schiessel, H.: How Short-Ranged Electrostatics Controls the Chromatin Structure on much Larger Scales, Europhys. Lett. 58 (2002), 140–146.

    Article  ADS  Google Scholar 

  • Schiessel, H.: DNA Folding: Structural and Mechanical Properties of the Two-Angle Model for chromatin, Biophys. J. 80 (2001), 1940–1956.

    Article  Google Scholar 

  • Schiessel, H.: Theory and Computer Modeling of the 30 nm Chromatin Fiber, New Compr. Biochem. 39 (2004), 397–420.

    Google Scholar 

  • Cremer, T. and Cremer, C.: Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells, Nat. Rev. Genet. 2 (2001), 292–301.

    Article  Google Scholar 

  • Cook, P.R.: Principles of Nuclear Structure and Function, Wiley, New York, 2001.

    Google Scholar 

  • Sedat, J. and Manuelidis, L.: A Direct Approach to the Structure of Eukaryotic Chromosomes, Cold Spring Harb. Symp. Quant. Biol. 42 (1978), 331–350.

    Google Scholar 

  • Maeshima, K. and Laemmli, U.K.: A Two-Step Scaffolding Model for Mitotic Chromosome Assembly, Dev. Cell 4 (2003), 467–480.

    Article  Google Scholar 

  • Cook, P.R.: A Chromomeric Model for Nuclear and Chromosome Structure, J. Cell Sci. 108 (1995), 2927–2935.

    Google Scholar 

  • Manuelidis, L.: A View of Interphase Chromosomes, Science 250 (1990), 1533–1540.

    ADS  Google Scholar 

  • Li, G., Sudlow, G. and Belmont, A.S.: Interphase Cell Cycle Dynamics of a Late-Replicating, Heterochromatic Homogeneously Staining Region: Precise Choreography of Condensation/Decondensation and Nuclear Positioning, J. Cell Biol. 140 (1998), 975–989.

    Article  Google Scholar 

  • Münkel, C. and Langowski, J.: Chromosome Structure Predicted by a Polymer Model, Phys. Rev. E 57 (1998), 5888–5896.

    ADS  Google Scholar 

  • Münkel, C., Eils, R., Dietzel, S., Zink, D., Mehring, C., Wedemann, G., Cremer, T. and Langowski, J.: Compartmentalization of Interphase Chromosomes Observed in Simulation and Experiment, J. Mol. Biol. 285 (1999), 1053–1065.

    Google Scholar 

  • Cremer, T., Kreth, G., Koester, H., Fink, R.H.A., Heintzmann, R., Cremer, M., Solovei, I., Zink, D. and Cremer, C.: Chromosome Territories, Interchromatin Domain Compartment and Nuclear Matrix: An Integrated View of the Functional Nuclear Architecture, Crit. Rev. Eukaryotic Gene Expr. 12 (2000), 179–212.

    Google Scholar 

  • Ostashevsky, J.: A Polymer Model for the Structural Organization of Chromatin Loops and Minibands in Interphase Chromosomes, Mol. Biol. Cell 9 (1998), 3031–3040.

    Google Scholar 

  • Schöppe, G. and Heermann, D.W.: Alternative Off-latice Model with Continuous Backbone Mass for Polymers, Phys. Rev. E. 59 (1999), 636–641.

    ADS  Google Scholar 

  • Rippe, K.: Making Contacts on a Nucleic Acid Polymer, TRENDS Biochem. Sci. 26 (2001), 733–740.

    Article  Google Scholar 

  • Matsson, L.: DNA Replication and Cell Cycle Progression Regulated by Long Range Interaction Between Protein Complexes Bound to DNA, J. Biol. Phys. 27 (2001), 329–359.

    Article  Google Scholar 

  • Girard, F., Bello, B., Laemmli, U.K. and Gehring, W.J.: In Vivo Analysis of Scaffold-Associated Regions in Drosophila: A Synthetic High-Affinity SAR Binding Protein Suppresses Position Effect Variegation, EMBO J. 17 (1998), 2079–2085.

    Article  Google Scholar 

  • Hart, C.M. and Laemmli, U.K.: Facilitation of Chromatin Dynamics by SARs, Curr. Opin. Genet. Dev. 8 (1998), 519–525.

    Article  Google Scholar 

  • Maison, C. and Almouzni, G.: Hp1 and the Dynamics of Chromatin Maintenance, Nat. Rev. Mol. Cell Biol. 5 (2004), 296–305.

    Article  Google Scholar 

  • Ishii, K. and Laemmli, U.K.: Structural and Dynamic Functions Establish Chromatin Domains, Mol. Cell 11 (2003), 237–248.

    Article  Google Scholar 

  • Blat, Y. and Kleckner, N.: Cohesins Bind to Preferential Sites Along Yeast Chromosome III, with Differential Regulation along Arms Versus the Centric Region, Cell 98 (1999), 249–259.

    Article  Google Scholar 

  • Cherstvy, A.G., Kornyshev, A.A. and Leikin, S.: Temperature-Dependent DNA Condensation Triggered by Rearrangement of Adsorbed Cations, J. Phys. Chem. B 106 (2002), 13362–13369.

    Article  Google Scholar 

  • Cherstvy, A.G., Kornyshev, A.A. and Leikin, S.: Torsional Deformation of Double Helix in Interaction and Aggregation of DNA, J. Phys. Chem. B 108 (2004), 6508–6518.

    Article  Google Scholar 

  • Halperin, A.: On the Collapse of Multiblock Copolymers, Macromolecules 24 (1991), 1418–1419.

    Google Scholar 

  • Semenov, A.N., Joanny, J.-F. and Khokhlov, A.R.: Associating Polymers: Equilibrium and Linear Viscoelasticity, Macromolecules 28 (1995), 1066–1075.

    Google Scholar 

  • Semenov, A.N., Nyrkova, I.A. and Khokhlov, A.R.: Ionomers: Characterization, Theory and Applications, Chapter Statistics and Dynamic of Ionomer Systems, CRC Press, Boca Raton, FL, 1996, pp. 251–279.

  • De Gennes, P.-G.: Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.

    Google Scholar 

  • Grosberg, A.Y. and Khokhlov, A.R.: Statistical Physics of Macromolecules, AIP Press, New York, 1994.

    Google Scholar 

  • Bornfleth, H., Edelmann, P., Zink, D., Cremer, T. and Cremer, C.: Quantitative Motion Analysis of Subchromosomal Foci in Living Cells Using Four-Dimensional Microscopy, Biophys. J. 77 (1999), 2871–2886.

    Article  Google Scholar 

  • Wolffe, A.: Chromatin: Structure and Function, Academic Press Inc., San Diego, 2nd edn., 1995.

    Google Scholar 

  • Saitoh, Y. and Laemmli, U.K.: Metaphase Chromosome Structure: Bands Arise from a Differential Folding Path of the Highly AT-rich Scaffold, Cell 76 (1994), 609–622.

    Article  Google Scholar 

  • Bickmore, W.A. and Oghene, K.: Visualizing the Spatial Relationships Between Defined DNA Sequences and the Axial Region of Extracted Metaphase Chromosomes, Cell 84 (1996), 95–104.

    Article  Google Scholar 

  • Yokota, H., van den Engh, G., Hearst, J.E., Sachs, R.K. and Trask, B.J.: Evidence for the Organization of Chromatin in Megabase Pair-Sized Loops Arranged Along a Random Walk Path in the Human G 0/G 1 Interphase Nucleus, J. Cell Biol. 130 (1995), 1239–1249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Odenheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odenheimer, J., Kreth, G. & Heermann, D.W. Dynamic Simulation of Active/Inactive Chromatin Domains. J Biol Phys 31, 351–363 (2005). https://doi.org/10.1007/s10867-005-7286-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-7286-3

Key words

Navigation