Skip to main content

Advertisement

Log in

Numerical Simulation of Physiological Blood Flow in 2-way Coronary Artery Bypass Grafts

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The Coronary Artery Bypass Graft (CABG) yields excellent results and remains the modern standard of care for treatment of occlusive disease in the cardiovascular system. However, the development of anastomotic Intimal Hyperplasia (IH) and restenosis can compromise the medium-and-long term effects of the CABG. This problem can be correlated with the geometric configuration and hemodynamics of the bypass graft. A novel geometric configuration was proposed for the CABG with two symmetrically implanted grafts for the purpose of improving the hemodynamics. Physiological blood flows in two models of bypass grafts were simulated using numerical methods. One model was for the conventional bypass configuration with a single graft (1-way model); the other model was for the proposed bypass configuration with two grafts (2-way model). The temporal and spatial distributions of hemodynamics, such as flow patterns and Wall Shear Stress (WSS) in the vicinity of the distal anastomoses, were analyzed and compared. Calculation results showed that the 2-way model possessed favorable hemodynamics with uniform longitudinal flow patterns and WSS distributions, which could decrease the probability of restenosis and improve the effect of the surgical treatment. Concerning the limitations of the 2-way bypass grafts, it is necessary to perform animal experiments to verify the viability of this novel idea for the CABG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Hartman, C.W., Kong, Y. and Margolis, J.R.: Aortocoronary Bypass Surgery: Correlation of Angiographic, Symptomatic and Functional Improvement at 1 year, Am. J. carodiol. 37 (1976), 352–357.

    Article  Google Scholar 

  • Hofer, M., Rappitsch, G., Perktold, K., Trubel, W. and Schima, H.: Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomosis and Correlation to Intimal Hyperplasia, J. Biomech. 29 (1996), 1297–1308.

    Article  PubMed  Google Scholar 

  • Ojha, M.: Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia, Circ. Res. 74 (1994), 1227–1231.

    PubMed  Google Scholar 

  • Sottiurai, V.S., Yao, J.S.T., Batson, R.C., Sue, S.L. and Jones, R.: Nakamura YA. Distal anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis, Ann. Vasc. Surg. 24 (1989), 711–722.

    Google Scholar 

  • Hyun, S., Kleinstreuer, C. and Archie, J.P. Jr.: Hemodynamics Analysis of Arterial Expansions with Implications to Thrombosis and Restenosis, Med. Eng. Phys. 22 (2000), 13–27.

    Article  PubMed  Google Scholar 

  • Glagov, S.: Intimal Hyperplasia, Vascular Modeling and the Restenosis Problem, Circulation 89 (1994), 2888–2891.

    PubMed  Google Scholar 

  • Bertolotti, C., Deplano, V., Fuseri, J. and Dupouy, P.: Numerical and Experimental Models of Post-Operative Realistic Flows in Stenosed Coronary Bypasses, J. Biomech. 34 (2001), 1049–1064.

    Article  PubMed  Google Scholar 

  • Buchanan, J.R., Kleinstreuer, C., Truskey, G.A. and Lei, M.: Relation Between Non-Uniform Hemodynamics and sites of Altered Permeability and Lesion Growth at the Rabbit Aorto-Celiac Junction, Atherosclerosis 143 (1999), 27–40.

    Article  PubMed  Google Scholar 

  • Buchanan, J.R. and Kleinstreuer, C.: Simulation of Particle-Hemodynamics in a Partially Occluded Artery Segment with Implications to the Initiation of Microemboli and Secondary Stenoses, J. Biomech. Eng. 120 (1998), 446–454.

    PubMed  Google Scholar 

  • Inzoli, F., Migliavacca, F. and Pennati, G.: Numerical Analysis of Steady Flow in Aorto-Coronary Bypass 3-D Model, J. Biomech. Eng. 118 (1996), 172–179.

    PubMed  Google Scholar 

  • Longest, P.W. and Kleinstreuer, C.: Particle-Hemodynamics Modeling of the Distal End-to-Side Femoral Bypass: Effects of Graft Caliber and Graft-End Cut, Med. Eng. Phys. 25 (2003), 843–858.

    Article  PubMed  Google Scholar 

  • Longest, P.W. and Kleinstreuer, C.: Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains, J. Biomech. 36 (2003), 421–430.

    Article  PubMed  Google Scholar 

  • Longest, P.W., Kleinstreuer, C. and Archie, J.P. Jr.: Particle Hemodynamics Analysis of Miller Cuff Arterial Anastomosis, J. Vasc. Surg. 38 (2003), 1353–1362.

    Article  PubMed  Google Scholar 

  • Longest, P.W. and Kleinstreuer, C.: Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses, J. Biomech. Eng. 125 (2003), 671–681.

    Article  PubMed  Google Scholar 

  • Longest, P.W., Kleinstreuer, C., Truskey, G.A. and Buchanan, J.R.: Relation Between Near-Wall Residence Times of Monocytes and Early Lesion Growth in the Rabbit Aorto-Celiac Junction, Ann. Biomed. Eng. 31 (2003), 53–64.

    Article  PubMed  Google Scholar 

  • Loth, F., Jones, S.A., Zarins, C.K., Giddens, D.P., Nassar, R.F., Glagov, S. and Bassiouny, H.S.: Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses, J. Biomech. Eng. 124 (2002), 44–51.

    Article  PubMed  Google Scholar 

  • Bassiouny, H.S., White, S., Glagov, S., Choi, E., Giddens, D.P. and Zarins, C.K.: Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced, J. Vasc. Surg. 15 (1992), 708–717.

    Article  PubMed  Google Scholar 

  • Wieslander, J.B. and Rausing, A.: A Histologic Comparison of Experimental Microarterial End-in-End (Sleeve) and End-to-End Anastomoses, Plast. Reconstr. Surg. 73 (1984), 279–287.

    PubMed  Google Scholar 

  • Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S.: Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress, Arteriosclerosis 5 (1985), 293–302.

    PubMed  Google Scholar 

  • White, C.R., Haidekker, M., Bao, X. and Frangos, J.A.: Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation, Circulation 103 (2001), 2508-2513.

    PubMed  Google Scholar 

  • Goubergrits, L., Affeld, K., Wellnhofer, E., Zurbrugg, R. and Holmer, T.: Estimation of Wall Shear Stress in Bypass Grafts with Computational Fluid Dynamics Method, Int. J. Artif. Organs. 24 (2001), 145–151.

    PubMed  Google Scholar 

  • Clowes, A.W., Gown, A.M., Hanson, S.R. and Reidy, M.A.: Mechanisms of Arterial Graft Gailure. 1. Role of Cellular Proliferation in Early Healing of PTFE Prostheses, Am. J. Pathol. 118 (1985), 43–54.

    PubMed  Google Scholar 

  • Ojha, M., Ethier, C.R., Johnston, K.W. and Cobbold, R.S.: Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model, J. Vasc. Surg. 12 (1990), 747–753.

    Article  PubMed  Google Scholar 

  • Lei, M., Kleinstreuer, H.C. and Archie, J.P.: Hemodytnamics Simulations and Computer-Aided Designs of G raft-Artery Junctions, J. Biomech. Eng. 119 (1997), 343–348.

    PubMed  Google Scholar 

  • Bertolotti, C. and Deplano, V.: Three-Dimensional Numerical Simulations of Flow Through a Stenosed Coronary Bypass, J. Biomech. 33 (2000), 1011–1022.

    Article  PubMed  Google Scholar 

  • Henry, F.S., Collins, M.W. and Hughes, P.E.: Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses, J. Biomech. Eng., 118 (1996), 302–310.

    PubMed  Google Scholar 

  • Taylor, R.S., Loh, A., McFarland, R.J., Cox, M. and Chester, J.F.: Improved Technique for Polyterafluoroethylence Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches, Br. J. Surg. 79 (1992), 348–354.

    PubMed  Google Scholar 

  • Moore, J.A., Steinman, D.A. and Prakash, S.: A numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses, J. Biomech. Eng. 121 (1999), 265–272.

    PubMed  Google Scholar 

  • Perktold, K., Tatzl, H. and Rappitsch, G.: Flow Dynamic Effect of the Anastomotic Angle: A Numerical Study of Pulsatile Flow in Vascular Graft Anastomoses Models, Technol. Health. Care. 1 (1994), 197–207.

    Google Scholar 

  • Kleinstreuer, C., Lei, M. and Archie, J.P. Jr.: Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis, J. Biomech. 29 (1996), 1605–1614.

    Article  PubMed  Google Scholar 

  • Cole, J.S., Watterson, J.K. and O’Reilly, M.J.G.: Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis, Med. Eng. Phys. 24 (2002), 393–401.

    Article  PubMed  Google Scholar 

  • Miller, J.H., Foreman, R.K., Ferguson, L. and Farris, I.: Interposition Vein Cuff for Anastomosis of Prosthesis to Small Artery, Aust. N. Z. J. Surg. 54 (1984), 283–285.

    PubMed  Google Scholar 

  • Bonert, M., Myers, J.G., Fremes, S., Williams, J. and Ethier, C.R.: A Numerical Study of Blood Flow in Coronary Artery Bypass Graft Side-to-Side Anastomosis, Ann. Biomed. Eng. 30 (2002), 599–611.

    Article  PubMed  Google Scholar 

  • Kim, Y.H., Chandran, K.B., Bower, T.J. and Corson, J.D.: Flow Dynamics Across End-to-End Vascular Bypass Graft Anastomoses, Ann. Biomed. Eng. 21 (1993), 311–320.

    PubMed  Google Scholar 

  • Sherwin, S.J., Shah, O., Doorly, D.J., Perio, J., Papaharrilaou, Y., Watkins, N., Caro, C.G. and Dumoulin, C.L.: The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis, J. Biomech. Eng. 122 (2000), 86–95.

    Article  PubMed  Google Scholar 

  • Deplano, V., Bertolotti, C. and Boiron, C.: Numerical Simulations of Unsteady Flows in a Stenosed Coronary Bypass Graft, Med. Biol. Eng. Comp. 39 (2001), 488–499.

    Google Scholar 

  • Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W. and Schima, H.: Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomosis of Bypass Grafts, J. Biomech. 35 (2002), 225–236.

    Article  PubMed  Google Scholar 

  • Hughes, P.E. and How, T.W.: Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis, J. Biomech. 29 (1996), 855–872.

    Article  PubMed  Google Scholar 

  • Lei, M., Giddens, D.P., Jones, S.A., Loth, F. and Bassiouny, H.: Pulsatile Flow in an End-to-Side Vascular Graft Model: Comparison of Computations with Experimental Data, J. Biomech. Eng. 123 (2001), 80–87.

    Article  PubMed  Google Scholar 

  • Noori, N., Scherer, R., Perktold, K., Czerny, M., Karner, G., Trubel, M., Polterauer, P. and Schima, H.: Blood Flow in Distal End-to-Side Anastomoses with PTFE and a Venous Patch: Results of an in vitro Flow Visualisation Study, Eur. J. Vasc. Endovasc. Surg. 18 (1999), 191–200.

    Article  PubMed  Google Scholar 

  • Liu, Y., Qiao, A. and Gao, S.: Physiological Flow Simulation Of Coronary Bypass Graft. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Aug 24–29, 2003, Sydney, Australia, [CD-ROM] ISBN 1877040142, Paper No. 1840.

  • Liu, Y., Qiao, A. and Zhu, H.: Haemodynamics Simulation for Carotid Bifurcation, Chinese J. Biomed. Eng. 12 (2003), 17–24.

    Google Scholar 

  • Qiao, A.K., Zeng, Y.J. and Xu, X.H.: Numerical Simulations of Stenosed Femoral Artery with Symmetric 2-Way Bypass Graft, Bio-Med. Mater. Eng. 14 (2004), 167–174.

    Google Scholar 

  • Perktold, K. and Rappitsch, G.: Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Biffercation Model, J. Biomech. 28 (1995), 845-856.

    Article  PubMed  Google Scholar 

  • White, S.S., Zarins, C.K., Giddens, D.P., Bassiouny, H., Loth, F., Jones, S.A. and Glagov, S.: Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length, J. Biomech. Eng. 115 (1993), 104–111.

    PubMed  Google Scholar 

  • Anayiotos, A.S., Pedroso, P.D., Eleftheriou, E.C., Venugopalan, R. and Holman, W.L.: Effect of a Flow-Streamlining Implant at the Distal Anastomosis of a Coronary Artery Bypass Graft, Ann. Biomed. Eng. 30 (2002), 917–926.

    Article  PubMed  Google Scholar 

  • Kute, S.M. and Vorp, D.A.: The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study, J. Biomech. Eng. 123 (2001), 277–283.

    Article  PubMed  Google Scholar 

  • Kleinstreuer, C., Lei, M. and Archie, J.P. Jr.: Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft-Artery Connector, J. Biomech. Eng. 118 (1996), 506–510.

    PubMed  Google Scholar 

  • Bryan, A.J. and Angelini, G.D.: The Biology of Saphenous Vein Graft Occlusion: Etiology and Strategies for Prevention, Curr. Opin. Cardiol. 9 (1994), 641–649.

    PubMed  Google Scholar 

  • Binns, R.L., Ku, D.N., Stewart, M.T., Ansley, J.P. and Coyle, K.A.: Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing, J. Vasc. Surg. 10 (1989), 326–337.

    Article  PubMed  Google Scholar 

  • Abbott, W.M., Green, R.M., Matsumato, T., Wheeler, J.R., Miller, N., Veith, F.J., Money, S. and Garrett, H.E.: Prosthetic Above-Knee Femoropopliteal Bypass Grafting: Results of a multi-Center Randomized Prospective Trial, J. Vasc. Surg. 25 (1997), 19–28.

    PubMed  Google Scholar 

  • Qiao, A., Liu, Y. and Guo, Z.: Wall Shear Stresses in Small and Large 2-Way Bypass Grafts, Med. Eng. Phys., in press.

  • Sanders, R.J., Kempczinski, R.F., Hammond, W. and DiClementi, D.: The Significance of Graft Diameter, Surgery 88 (1980), 856–866.

    PubMed  Google Scholar 

  • Ballyk, P., Steinman, D.A. and Ethier, C.R.: Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis, Biorheology 31 (1994), 565–586.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aike Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, A., Liu, Y., Li, S. et al. Numerical Simulation of Physiological Blood Flow in 2-way Coronary Artery Bypass Grafts. J Biol Phys 31, 161–182 (2005). https://doi.org/10.1007/s10867-005-5829-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-5829-2

Keywords

Navigation