Skip to main content
Log in

Electromagnetic Field of Microtubules: Effects on Transfer of Mass Particles and Electrons

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Groot, M.L., Vos, M.H., Schlichting, I., van Mourik, F., Joffre, M., Lambry, J.C. and Martin, J.-L.: Coherent Infrared Emission from Myoglobin Crystals: An Electric Field Measurement, Proc. Natl. Acad. Sci. U.S.A. 99(3), (2002) 1323–1328.

    Article  ADS  Google Scholar 

  • Vos, M.H., Lambry, J.C. and Martin, J.-L.: Excited State Coherent Vibrational Motion in Deoxymyoglobin, J. Chin. Chem. Soc. 47(4A), (2000), 765–768.

    Google Scholar 

  • Liebl, U., Lipowski, G., Negrerie, M., Lambry, J.C., Martin, J.-L. and Vos, M.H.: Coherent Reaction Dynamics in a Bacterial Cytochrome c Oxidase, Nature 401(6749), (1999), 181–184.

    ADS  Google Scholar 

  • Lambry, J.C., Vos, M.H. and Martin, J.-L.: Molecular Dynamics Simulation of Carbon Monoxide Dissociation from Heme a(3) in Cytochrome c Oxidase from Paracoccus denitrificans, J. Phys. Chem. A 103(49), (1999), 10132–10137.

    Google Scholar 

  • Bonvalet, A., Nagle, J., Berger, V., Migus, A., Martin, J.-L. and Joffre, M.: Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells, Phys. Rev. Lett. 76(23), (1996), 4392–4395.

    Article  ADS  Google Scholar 

  • Vos, M.H. and Martin, J.-L.: Femtosecond Processes in Proteins, Biochem. Biophys. Acta 1411 (1999), 1–20.

    Google Scholar 

  • Pokorný, J.: Endogenous Electromagnetic Forces in Living Cells: Implications for Transfer of Reaction Components, Electro- Magnetobiol. 20(1), (2001), 59–73.

    Google Scholar 

  • Li, W. and Kaneko, K.: Long-Range Correlation and Partial 1/fα Spectrum in Noncoding DNA Sequence, Europhys. Lett. 17 (1992), 655–660.

    ADS  Google Scholar 

  • Voss, R.F.: Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences, Phys. Rev. Lett. 68 (1992), 3805–3808.

    Article  ADS  Google Scholar 

  • Arneodo, A., Bacry, E., Graves, P.V. and Muzy, J.F.: Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis, Phys. Rev. Lett. 74 (1995), 3293–3296.

    ADS  Google Scholar 

  • Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M. and Stanley, E.H.: Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis, Phys. Rev. E 51 (1995), 5084–5091.

    Article  ADS  Google Scholar 

  • Herzel, H. and Grosse, I.: Correlations in DNA Sequences: The Role of Protein Coding Segments, Phys. Rev. E 55 (1997), 800–810.

    Article  ADS  Google Scholar 

  • Audit, B., Thermes, C., Vaillant, C., d'Aubenton-Carafa, Y., Muzy, J.F. and Arneodo, A.: Long-Range Correlation in Genomic DNA: A Signature of the Nucleosomal Structure, Phys. Rev. Lett. 86 (2001), 2471–2474.

    Article  ADS  Google Scholar 

  • Holste, D. and Grosse, I.: Repeats and Correlations in Human DNA Sequences, Phys. Rev. E 67 (2003), 061913-1–061913-7.

    Google Scholar 

  • Maciá, E., Domínguez-Adame, F. and Sánchez, A.: Effects of the Electronic Structure on the dc Conductance of Fibonacci Superlattices, Phys. Rev. B 49 (1994-II), 9503–9510.

    Google Scholar 

  • Roche, S., Bicout, D., Maciá, E. and Kats, E.: Long Range Correlations in DNA: Scaling Properties and Charge Transfer Efficiency, Phys. Rev. Lett. 91 (2003), 228101-1–228101-4.

    Google Scholar 

  • Bicout, D.J. and Kats, E.: Long-Range Electron Transfer in Periodic Nucleotide Base Stacks, Phys. Lett. A 300 (2002), 479–484.

    Article  ADS  Google Scholar 

  • Schulz, G.E and Schirmer, R.H.: Principles of Protein Structure, Springer, Berlin, 1979.

    Google Scholar 

  • Ladik, J. and Förner W.: The Beginnings of Cancer in the Cell, Springer, Berlin, 1994.

    Google Scholar 

  • Huang, X.Q., Jiang, S.S., Peng, R.W., Liu, Y.M., Qiu, F. and Hu, A.: Characteristic Wavefunctions of One-Dimensional Periodic, Quasiperiodic and Random Lattices, Modern Phys. Lett. B 17 (2003), 1461–1476.

    Article  ADS  Google Scholar 

  • Frauenfelder, H., Wolynes, P.G. and Austin, R.H.: Biological Physics, Rev. Mod. Phys. Centenary, 71(2), (1999), S419–S430.

    Google Scholar 

  • Fröhlich, H.: Quantum Mechanical Concepts in Biology, in M. Marois (ed.), Theoretical Physics and Biology, North Holland, Amsterdam, 1969, pp.13–22.

  • Fröhlich, H.: Bose Condensation of Strongly Excited Longitudinal Electric Modes, Phys. Lett. A 26 (1968), 402–403.

    ADS  Google Scholar 

  • Fröhlich, H.: The Biological Effects of Microwaves and Related Questions, Advances in Electronics and Electron Phys. 53 (1980), 85–152.

    Google Scholar 

  • Šrobár, F.: An Equifinality Property of the Fröhlich Equations Describing Electromagnetic Activity of the Living Cells, in: Book of Abstracts of the XVIth Int. Symp. Bioelectrochem. Bioenerg., Bratislava, Slovakia, June 1–6, 2001, p. 167.

  • Šrobár, F. and Pokorný, J.: Topology of Mutual Relationship in the Fröhlich Model, Bioelectrochem. Bioenerg. 41 (1996), 31–33.

    Google Scholar 

  • Šrobár, F. and Pokorný, J.: Causal Structure of the Fröhlich Model of Cellular Electromagnetic Activity, Electro- Magnetobiol. 18 (1999), 257–286.

    Google Scholar 

  • Pokorný, J., Jelínek, F. and Trkal, V.: Electric Field around Microtubules, Bioelectrochem, Bioenerg. 45 (1998), 239–245.

    Google Scholar 

  • Pokorný, J. and Wu, T.-M.: Biophysical Aspects of Coherence and Biological Order, Academia, Praha; Springer, Berlin, 1998.

    Google Scholar 

  • Pokorný, J.: Viscous Effects on Polar Vibrations in Microtubules, Electromagnetic Biol. Med. 22 (2003), 15–29.

    Google Scholar 

  • Pokorný, J.: Excitation of Vibrations in Microtubules in Living Cells, Bioelectrochem. 63 (2004), 321–326.

    Google Scholar 

  • Pohl, H.A.: Oscillating Fields about Growing Cells, Int. J. Quant. Chem. Quant. Biol. Symp. 7 (1980), 411–431.

    Google Scholar 

  • Rowlands, S. and Sewchand, L.S.: Quantum Mechanical Interaction of Human Erythrocytes, Canad. J. Physiol. Pharmacol. 60 (1982), 52–59.

    Google Scholar 

  • Albrecht-Buehler, G.: Rudimentary Form of Cellular ‘Vision’, Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 8288–8293.

    ADS  Google Scholar 

  • Del Giudice, E., Doglia, S., Milani, M., Smith, C.W. and Vitiello, G.: Magnetic Flux Quantization and Josephson Behaviour in Living Systems, Phys. Scr. 40 (1989), 786–791.

    ADS  Google Scholar 

  • Hölzel, R. and Lamprecht, I.: Electromagnetic Field around Biological Cells, Neural Network World 4 (1994), 327–337.

    Google Scholar 

  • Pokorný, J., Hašek, J., Jelínek, F., Šaroch, J. and Palán, B.: Electromagnetic Activity of Yeast Cells in the M Phase, Electro- Magnetobiol. 20 (2001), 371–396.

    Google Scholar 

  • Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S. and Gimzewski, J.K.: Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae, Science 305 (2004), 1147–1150.

    Google Scholar 

  • Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C. and Lubensky, T.C.: Microrheology, Stress Fluctuations, and Active Behavior of Living Cells, Phys. Rev. Lett. 91 (2003), 198101-1–198101-4.

    Google Scholar 

  • Caspi, A., Granek, R. and Elbaum, M.: Diffusion and Directed Motion in Cellular Transport, Phys. Rev. E 66 (2002), 011916-1–011916-12.

    Google Scholar 

  • Satarić, M., Tuszyński, J.A. and Žakula, R.B.: Kinklike Excitations as an Energy Transfer Mechanism in Microtubules, Phys. Rev. E 48 (1993), 589–597.

    ADS  Google Scholar 

  • Tuszyński, J.A., Hameroff, S., Satarić, M.V., Trpisová, B. and Nip, M.L.A.: Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly, J. theor. Biol. 174 (1995), 371–380.

    Google Scholar 

  • Tuszyński, J.A. and Brown, J.A.: Models of Dielectric and Conduction Properties of Microtubules. In: Abstract Book of Int. Symp. Electromagnetic Aspects of Selforganization in Biol., Prague, July 9–12, 2000, pp. 3–4.

  • Stracke, R., Böhm, K.J., Wollweber, L., Tuszyński J.A. and Unger, E.: Analysis of the Migration of Single Microtubules in Electric Fields, Biochem. Biophys. Res. Comm. 293 (2002), 602–609.

    Article  Google Scholar 

  • Caplow, M., Ruhlen, R.L. and Shanks, J.: The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice, J. Cell Biol. 127 (1994), 779–788.

    Article  Google Scholar 

  • Caplow, M. and Shanks, J.: Evidence that a Single Monolayer Tubulin-GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules, Molec. Biol. Cell 7 (1996), 663–675.

    Google Scholar 

  • Papoulis, A.: Probability, Random Variables and Stochastic Processes, McGraw Hill, New York, 1965.

    MATH  Google Scholar 

  • Denisov, S., Klafter, J. and Urbakh, M.: Some New Aspects of Lévy Walks and Flights: Directed Transport, Manipulation Through Flights and Population Exchange, Physica D 187 (2004), 89–99.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dekker, A.J.: Solid State Physics, Prentice-Hall, Englewood Cliffs, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Pokorný.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokorný, J., Hašek, J. & Jelínek, F. Electromagnetic Field of Microtubules: Effects on Transfer of Mass Particles and Electrons. J Biol Phys 31, 501–514 (2005). https://doi.org/10.1007/s10867-005-1286-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-1286-1

Key words

Navigation