Skip to main content
Log in

Protein Surface Dynamics: Interaction with Water and Small Solutes

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Previous time resolved measurements had indicated that protons could propagate on the surface of a protein, or a membrane, by a special mechanism that enhances the shuttle of the proton towards a specific site [1]. It was proposed that a proper location of residues on the surface contributes to the proton shuttling function. In the present study, this notion was further investigated using molecular dynamics, with only the mobile charge replaced by Na+ and Cl ions. A molecular dynamics simulation of a small globular protein (the S6 of the bacterial ribosome) was carried out in the presence of explicit water molecules and four pairs of Na+ and Cl ions. A 10 ns simulation indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. Yet it was noted that, close to some domains, the ions extended their duration near the surface, suggesting that the local electrostatic potential prevented them from diffusing to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Nachliel, E., Gutman, M., Tittor, J. and Oesterhelt, D.: Proton Transfer Dynamics on the Surface of the Late M State of Bacteriorhodopsin, Biophys. J. 83 (2002), 416–426.

    ADS  Google Scholar 

  • Bizzarri, A.R. and Cannistraro, S.: Molecular Dynamics of Water at the Protein-Solvent Interface, J. Phys. Chem. B 106 (2002), 6617–6633.

    Article  Google Scholar 

  • Makarov, V., Pettitt, B.M. and Feig, M.: Solvation and Hydration of Proteins and Nucleic Acids: A Theoretical View of Simulation and Experiment, Acc. Chem. Res. 35 (2002), 376–384.

    Article  Google Scholar 

  • Svergun, D.I., Richard, S., Koch, M.H., Sayers, Z., Kuprin, S. and Zaccai, G.: Protein Hydration in Solution: Experimental Observation by X-ray and Neutron Scattering, Proc. Natl. Acad. Sci. U.S. A. 95 (1998), 2267–2272.

    Article  ADS  Google Scholar 

  • Smith, J.C., Merzel, F., Verma, C.S. and Fischer, S.: Protein Hydration Water: Structure and Thermodynamics, J. Mol. Liquid 101 (2002), 27–33.

    Google Scholar 

  • Schiffer, C.A. and van Gunsteren, W.F.: Accessibility and Order of Water Sites in and Around Proteins: A Crystallographic Time-Averaging Study, Proteins 36 (1999), 501–511.

    Article  Google Scholar 

  • Sanschagrin, P.C. and Kuhn, L.A.: Cluster Analysis of Consensus Water Sites in Thrombin and Trypsin Shows Conservation Between Serine Proteases and Contributions to Ligand Specificity, Protein Sci. 7 (1998), 2054–2064.

    Article  Google Scholar 

  • Fenimore, P.W., Frauenfelder, H., McMahon, B.H. and Parak, F.G.: Slaving: Solvent Fluctuations Dominate Protein Dynamics and Functions, Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 16047–16051.

    Article  ADS  Google Scholar 

  • Higo, J. and Nakasako, M.: Hydration Structure of Human Lysozyme Investigated by Molecular Dynamics Simulation and Cryogenic X-Ray Crystal Structure Analyses: On the Correlation Between Crystal Water Sites, Solvent Density, and Solvent Dipole, J. Comput. Chem. 23 (2002), 1323–1336.

    Article  Google Scholar 

  • Curtis, R.A., Prausnitz, J.M. and Blanch, H.W.: Protein-Protein and Protein-Salt Interactions in Aqueous Protein Solutions Containing Concentrated Electrolytes, Biotechnol. Bioeng. 57 (1998), 11–21.

    Article  Google Scholar 

  • Scheiner, S.: Quantum Chemical Studies of Proton Transport Through Biomembranes, Ann. N.Y. Acad. Sci. 367 (1981), 493–509.

    ADS  Google Scholar 

  • Gutman, M., Huppert, D. and Nachliel, E.: Kinetic Studies of Proton Transfer in the Microenvironment of a Binding Site, Eur. J. Biochem. 121 (1982), 637–642.

    Article  Google Scholar 

  • Paddock, M.L., McPherson, P.H., Feher, G. and Okamura, M.Y.: Pathway of Proton Tranfer in Bacterial Reaction Centers: Replacement of Serinve-L22 by Alanine Inhibits Electron and Proton Transfers Associated with Reduction of Quinone to Dihydroquinone, Proc. Natl. Acad. Sci. U.S.A. 87 (1990), 6803–6807.

    ADS  Google Scholar 

  • Bashford, D. and Gerwert, K.: Electrostatic Calculations of the pKa Values of Ionizable Groups in Bacteriorhodopsin, J. Mol. Biol. 224 (1992), 473–486.

    Article  Google Scholar 

  • Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N.A.: Proton Migration Along the Membrane Surface and Retarded Surface to Bulk Transfer, Nature 370 (1994), 379–382.

    Article  ADS  Google Scholar 

  • McPherson, P.H., Schonfeld, M., Paddock, M.L., Okamura, M.Y. and Feher, G.: Protonation and Free Energy Changes Associated with Formation of QBH2 in Native and Glu-L212→Gln Mutant Reaction Centers from Rhodobacter Sphaeroides, Biochemistry 33 (1994), 1181–1193.

    Article  Google Scholar 

  • le Coutre, J. and Gerwert, K.: Kinetic Isotope Effects Reveal an Ice-Like and a Liquid-Phase-type Intramolecular Proton Transfer in Bacteriorhodopsin, FEBS Lett. 398 (1996), 333–336.

    Google Scholar 

  • Gutman, M. and Nachliel, E.: Time Resolved Dynamics of Proton Transfer in Proteinous Systems, Annu. Rev. Phys. Chem. 48 (1997), 329–356.

    Article  Google Scholar 

  • Adelroth, P., Paddock, M.L., Sagle, L.B., Feher, G. and Okamura, M.Y.: Identification of the Proton Pathway in Bacterial Reaction Centers: Both Protons Associated with Reduction of QB to QBH2 Share a Common Entry Point, Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 13086–13091.

    Article  ADS  Google Scholar 

  • Zscherp, C., Schlesinger, R. and Heberle, J.: Time-Resolved FT-IR Spectroscopic Investigation of the pH-Dependent Proton Transfer Reactions in the E194Q Mutant of Bacteriorhodopsin, Biochem. Biophys. Res. Commun. 283 (2001), 57–63.

    Article  Google Scholar 

  • Gutman, M., Nachliel, E., Mezer, A. and Noivirt, O.: Gauging of Local Micro-Environment at Protein Water Interface by Time-Resolved Single-Proton Transfer Reactions, Ann. Eur. Acad. Sci. 1 (2003), 75–107.

    Google Scholar 

  • Nachliel, E. and Gutman, M.: Kinetic Analysis of Proton Transfer Between Reactants Adsorbed to the Same Micelle. The Effect of Proximity on the Rate Constants, Eur. J. Biochem. 143 (1984), 83–88.

    Article  Google Scholar 

  • Gutman, M., Nachliel, E., Bamberg, E. and Christensen, B.: Time-Resolved Protonation Dynamics of a Black Lipid Membrane Monitored by Capacitative Currents, Biochim. Biophys. Acta 905 (1987), 390–398.

    Google Scholar 

  • Checover, S., Marantz, Y., Nachliel, E., Gutman, M., Pfeiffer, M., Tittor, J., Oesterhelt, D. and Dencher, N.A.: Dynamics of the Proton Transfer Reaction on the Cytoplasmic Surface of Bacteriorhodopsin, Biochemistry 40 (2001), 4281–4292.

    Article  Google Scholar 

  • Tran-Thi, T.H., Gustavsson, T., Prayer, C., Pommeret, S. and Hynes, J.T.: Primary Ultrafast Events Preceding the Photoinduced Proton Transfer from Pyranine to Water, Chem. Phys. Lett. 329 (2000), 421–430.

    Article  ADS  Google Scholar 

  • Forster, T. and Volker, S.: Kinetics of Proton Transfer Reaction Involving Hydroxypyrene-Trisulfonate in Aqueous Solution by Nanosecond Laser Absorption Spectroscopy, Chem. Phys. Lett. 34 (1975), 1–5.

    ADS  Google Scholar 

  • Weller, A.: Excited State Proton Transfer, Prog. React. Kinet. 1 (1961), 198–214.

    Google Scholar 

  • Gutman, M. and Huppert, D.: Rapid pH and deltamuH+ Jump by Short Laser Pulse, J. Biochem. Biophys. Methods 1 (1979), 9–19.

    Article  Google Scholar 

  • Checover, S., Nachliel, E., Dencher, N.A. and Gutman, M.: Mechanism of Proton Entry into the Cytoplasmic Section of the Proton-Conducting Channel of Bacteriorhodopsin, Biochemistry 36 (1997), 13919–13928.

    Article  Google Scholar 

  • Marantz, Y., Nachliel, E., Aagaard, A., Brzezinski, P. and Gutman, M.: The Proton Collecting Function of the Inner Surface of Cytochrome C Oxidase from Rhodobacter Sphaeroides, Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 8590–8595.

    Article  ADS  Google Scholar 

  • Cohen, B. and Huppert, D.: Evidence for a Continuous Transition from Nonadiabatic to Adiabatic Proton Transfer Dynamics in Protic Solvents. J. Phys. Chem. A 105 (2001), 2980–2988.

    Google Scholar 

  • Agalarov, S.C., Prasad, G.S., Funke, P.M., Stout, C.D. and Williamson, J.R.: Structure of the S15,S6,S18-rRNA Complex: Assembly of the 30S Ribosome Central Domain, Science 288 (2000), 107–112.

    Article  ADS  Google Scholar 

  • Lindahl, E., Hess, B. and van der Spoel, D.: Gromacs 3.0: A Package for Molecular Simulation and Trajectory Analysis, J. Mol. Med. 7 (2001), 306–317.

    Google Scholar 

  • van Gunsteren, W.F. and Berendsen, H.J.C.: Gromos-87 Manual, Biomos BV, Groningen, 1987.

    Google Scholar 

  • van Buuren, A.R., Marrink, S.J. and Berendsen, H.J.C.: A Molecular Dynamics Study of the Decane/Water Interface, J. Phys. Chem. 97 (1993), 9206–9212.

    Article  Google Scholar 

  • Mark, A.E., van Helden, S.P., Smith, P.E., Janssen, L.H.M. and van Gunsteren, W.F.: Convergence Properties of Free Energy Calculations: Alpha-Cyclodextrin Complexes as a Case Study, J. Am. Chem. Soc. 116 (1994), 6293–6302.

    Article  Google Scholar 

  • van Buuren, A.R. and Berendsen, H.J.C.: Molecular Dynamics Simulations of the Stability of a 22 Residue Alpha-Helix in Water and 30% Trifluoroethanol, Biopolymers 33 (1993), 1159–1166.

    Article  Google Scholar 

  • Liu, H., Muller-Plathe, F. and van Gunsteren, W.F.A.: Force Field for Liquid Dimethyl Sulfoxide and Liquid Proporties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation, J. Am. Chem. Soc. 117 (1995), 4363–4366.

    Google Scholar 

  • Lindahl, M., Svensson, L.A., Liljas, A., Sedelnikova, S.E., Eliseikina, I.A., Fomenkova, N.P., Nevskaya, N., Nikonov, S.V., Garber, M.B. and Muranova, T.A.: Crystal Structure of the Ribosomal Protein S6 from Thermus Thermophilus, EMBO J. 13 (1994), 1249–1254.

    Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E.: The Protein Data Bank, Nucleic Acids Res. 28 (2000), 235–242.

    Article  Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J.: Interaction Models for Water in Relation to Protein Hydration, Nature 224 (1969), 175–177.

    Google Scholar 

  • van der Spoel, D. and Berendsen, H.J.C.: Molecular Dynamics Simulations of Leu-Enkephalin in Water and DMSO, Biophys. J. 72 (1997), 2032–2041.

    Google Scholar 

  • Tieleman, D.P. and Berendsen, H.J.C.: Molecular Dynamics Simulations of a Fully Hydrated Dipalmitoylphosphatidylcholine Bilayer with Different Macroscopic Boundary Conditions and Parameters, J. Chem. Phys. 105 (1996), 4871–4880.

    Article  ADS  Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.G.E.M.: LINCS: A Linear Constraint Solver for Molecular Simulations, J. Comp. Chem. 18 (1997), 1463–1472.

    Google Scholar 

  • Miyamoto, S. and Kollman, P.A.: SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid Water Models, J. Comp. Chem. 13 (1992), 952–962.

    Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., DiNola, A. and Haak, J.R.: Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys. 81 (1984), 3684–3690.

    Article  ADS  Google Scholar 

  • Darden, T., York, D. and Pedersen, L.: Particle Mesh Ewald: An N-log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys. 98 (1993), 10089–10092.

    Article  ADS  Google Scholar 

  • Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A.: Electrostatics of Nanosystems: Application to Microtubules and the Ribosome, Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 10037–10041.

    Article  ADS  Google Scholar 

  • Humphrey, W., Dalke, A. and Schulten, K.: VMD: Visual Molecular Dynamics, J. Mol. Gr. 14 (1996), 33–38.

    Google Scholar 

  • van der Spoel, D., van Maaren, P.J. and Berendsen, H.J.C.: A Systematic Study of Water Models for Molecular Simulation: Derivation of Water Models Optimized for Use with a Reaction Field, J. Chem. Phys. 108 (1998), 10220–10230.

    Article  ADS  Google Scholar 

  • Harned, S.H. and Hildreth, C.L.: The Differential Diffusion Coefficients of Lithium and Sodium Chlorides in Dilute Aqueous Solution at 25 degrees. J. Am. Chem. Soc. 73 (1951), 650–652.

    Google Scholar 

  • Stokes, R.H.: The Diffusion Coefficients of Eight Uni-Univalent Electrolytes in Aqueous Solution at 25, J. Am. Chem. Soc. 72 (1950), 2243–2247.

    Google Scholar 

  • Macdonald, P.M. and Seelig, J.: Anion Binding to Neutral and Positively Charged Lipid Membranes, Biochemistry 27 (1988), 6769–6775.

    Google Scholar 

  • Pandit, S.A., Bostic, D. and Berkowitz, M.L.: Molecular Dynamics Simulation of a Dipalmitoylphosphatidylcholine Bilayer with NaCl, Biophys. J. 84 (2003), 3743–3750.

    Google Scholar 

  • Froloff, N., Windemuth, A. and Honig, B.: On the Calculation of Binding Free Energies Using Continuum Methods: Application to MHC Class I Protein-Peptide Interactions, Protein Sci. 6 (1997), 1293–1301.

    Article  Google Scholar 

  • Miyashita, O., Onuchic, J.N. and Okamura, M.Y.: Continuum Electrostatic Model for the Binding of Cytochrome c2 to the Photosynthesis Reaction Center from Rhodobacter Sphaeroides, Biochemistry 42 (2003), 11651–11660.

    Article  Google Scholar 

  • Marantz, Y., Einarsdottir, O.O., Nachliel, E. and Gutman, M.: Proton-Collecting Properties of Bovine Heart Cytochrome C Oxidase: Kinetic and Electrostatic Analysis, Biochemistry 40 (2001), 15086–15097.

    Article  Google Scholar 

  • Agmon, N.: The Grotthuss Mechanism, Chem. Phys. Lett. 244 (1995), 456–462.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, R., Nachliel, E. & Gutman, M. Protein Surface Dynamics: Interaction with Water and Small Solutes. J Biol Phys 31, 433–452 (2005). https://doi.org/10.1007/s10867-005-0171-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-0171-2

Key words

Navigation