Skip to main content
Log in

Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDPDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDPDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDPDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Structures of the F1FO-ATPsynthase from E. coli, P. denitrificans, and S. cerevisiae
Fig. 2: Representation of the F1FO-ATPsynthase from bacteria
Fig. 3: Model of the ATP synthesis binding change mechanism
Fig. 4: Model of the ATP hydrolysis binding change mechanism for the bacterial F1-ATPase
Fig. 5: Model of the ATP hydrolysis binding change mechanism for the human F1-ATPase
Fig. 6: Conformational changes of the bacterial ε subunit during active to inactive F1-ATPase transitions
Fig. 7: Loss of ATP binding site of the ε subunit from bacteria belonging to the α-proteobacteria class
Fig. 8: Conformational change of the mitochondrial IF1 from short N-terminal α-helix to extended N-terminal inhibitory α-helix
Fig. 9: Conformational change of the ζ subunit of Paracoccus denitrificans F1-ATPase from N-terminal disordered to inhibitory ordered α-helical structure
Fig. 10: The consensus INGECORE residues of the αDPβDPγ interface form part of the binding site of the inhibitory N-terminus of the ζ subunit in Paracoccus denitrificans
Fig. 11: Unidirectional pawl-ratchet mechanism of the ζ subunit of the ATP synthase of Paracoccus denitrificans

Similar content being viewed by others

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    CAS  PubMed  Google Scholar 

  • Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478

    CAS  PubMed  Google Scholar 

  • Allegretti M, Klusch N, Mills DJ, Vonck J, Kühlbrandt W, Davies KM (2015) Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 14:237–240

    Google Scholar 

  • Allen RD (1995) Membrane tubulation and proton pumps. Protoplasma 189:1–8

    CAS  Google Scholar 

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arselin G, Giraud MF, Dautant A, Vaillier J, Brethes D, Coulary-Salin B, Schaeffer J, Velours J (2003) The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur J Biochem 270:1875–1884

    CAS  PubMed  Google Scholar 

  • Arselin G, Vaillier J, Salin B, Schaeffer J, Giraud MF, Dautant A, Brethes D, Velours J (2004) The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J Biol Chem 279:40392–40399

    CAS  PubMed  Google Scholar 

  • Bason JV, Montgomery MG, Leslie AG, Walker JE (2014) Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. Proc Natl Acad Sci U S A 111:11305–11310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilyard T, Nakanishi-Matsui M, Steel BC, Pilizota T, Nord AL, Hosokawa H, Futai M, Berry RM (2013) High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase. Philos Trans R Soc Lond Ser B Biol Sci 368:20120023

    Google Scholar 

  • Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F et al (2012) ATP synthesis and storage. Purinergic Signal 8:343–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchal P, Kučera I (2003) Examination of membrane protein expression in Paracoccus denitrificans by two-dimensional gel electrophoresis. J Basic Microbiol 44:17–22

    Google Scholar 

  • Boyer PD (1997) The ATP synthase--a splendid molecular machine. Annu Rev Biochem 66:717–749

    CAS  PubMed  Google Scholar 

  • Boyer PD (2002) Catalytic site occupancy during ATP synthase catalysis. FEBS Lett 512:29–32

    CAS  PubMed  Google Scholar 

  • Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC (1977) Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–1026

    CAS  PubMed  Google Scholar 

  • Bravo C, Minauro-Sanmiguel F, Morales-Rios E, Rodriguez-Zavala JS, Garcia JJ (2004) Overexpression of the inhibitor protein IF(1) in AS-30D hepatoma produces a higher association with mitochondrial F(1)F(0) ATP synthase compared to normal rat liver: functional and cross-linking studies. J Bioenerg Biomembr 36:257–264

    CAS  PubMed  Google Scholar 

  • Cabezon E, Butler PHG, Runswick MJ, Walker JE (2000) Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. J Biol Chem 275:25460–25464

    CAS  PubMed  Google Scholar 

  • Cabezon E, Runswick M, Leslie AGW, Walker J (2001) The stucture of bovine IF1, the regulatory subunit of mitochondrial F-ATPase. EMBO J 20:6990–6996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cain BD, Simoni RD (1989) Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit J Biol Chem 264:3292–3300

    CAS  PubMed  Google Scholar 

  • Capaldi RA, Schulenberg B (2000) The ϵ subunit of bacterial and chloroplast F1F0 ATPases. Structure, arrangement, and role of the ϵ subunit in energy coupling within the complex Biochim Biophys Acta 1458:263–269

    CAS  PubMed  Google Scholar 

  • Capaldi RA, Aggeler R, Turina P, Wilkens S (1994) Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends Biochem Sci 19:284–289

    CAS  PubMed  Google Scholar 

  • Capaldi RA, Schulenberg B, Murray J, Aggeler R (2000) Cross-linking and electron microscopy studies of the structure and functioning of the Escherichia coli ATP synthase. J Exp Biol 203:29–33

    CAS  PubMed  Google Scholar 

  • Chandel NS, Schumacker PT (1999) Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett 454:173–176

    CAS  PubMed  Google Scholar 

  • Cingolani G, Duncan TD (2011) Structure of the ATP synthase catalytic complex F(1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 103:1–27

    CAS  Google Scholar 

  • Cori CF (1983) Embden and the glycolytic pathway. Trends Biochem Sci 8:257–259

    CAS  Google Scholar 

  • Cross RL (1981) The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem 50:681–714

    CAS  PubMed  Google Scholar 

  • Dautant A, Velours J, Giraud M-F (2010) Crystal structure of the mg·ADP-inhibited state of the yeast F1c10-ATP synthase. J Biol Chem 285:29502–29510

    CAS  PubMed  PubMed Central  Google Scholar 

  • de la Rosa-Morales, F. (2005) "Composición de subunidades y Mecanismo de Regulación de la F1FoATP sintasa de Paracoccus denitrificans". In Posgrado en Ciencias Biologicas (Biologia Experimental), Facultad de Ciencias (Direccion General de Bibliotecas: Universidad Nacional Autonoma de Mexico (U.N.A.M.)), pp. 75

  • Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    CAS  PubMed  Google Scholar 

  • Entner N, Doudoroff M (1952) Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 196:853–862

    CAS  PubMed  Google Scholar 

  • Esparza-Moltó, P.B., and Cuezva, J.M. (2018) The Role of Mitochondrial H+-ATP Synthase in Cancer. Front Oncol 8, eCollection

  • Faccenda D, Campanella M (2012) Molecular Regulation of the Mitochondrial F(1)F(o)-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF(1)). Int J Cell Biol 2012:367934

    PubMed  PubMed Central  Google Scholar 

  • Faccenda D, Tan CH, Duchen MR, Campanella M (2013) Mitochondrial IF1 preservers cristae structure to limit apoptotic cell death signaling. Cell Cycle 12:2530–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faccenda D, Nakamura J, Gorini G, Dhoot GK, Piacentini M, Yoshida M, Campanella M (2017) Control of mitochondrial remodeling by the ATPase inhibitory factor 1 unveils a pro-survival relay via OPA1. Cell Rep 18:1869–1883

    CAS  PubMed  Google Scholar 

  • Feniouk BA, Mulkidjanian AY, Junge W (2005) Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim Biophys Acta 1706:184–194

    CAS  PubMed  Google Scholar 

  • Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 1757:326–338

    CAS  PubMed  Google Scholar 

  • Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE (2016) Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Proc Natl Acad Sci U S A 113:10860–10865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Cardenas LP, Villanueva-Chimal E, Salinas LS, Jose-Nunez C, Tuena de Gomez Puyou M, Navarro RE (2017) Caenorhabditis elegans ATPase inhibitor factor 1 (IF1) MAI-2 preserves the mitochondrial membrane potential (Deltapsim) and is important to induce germ cell apoptosis. PLoS One 12:e0181984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fillingame RH, Steed PR (2014) Half channels mediating H+ transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837:1063–1068

    CAS  PubMed  Google Scholar 

  • Fillingame RH, Peters LK, White LK, Mosher ME, Paule CR (1984) Mutations altering aspartyl-61 of the omega subunit (uncE protein) of Escherichia coli H+ -ATPase differ in effect on coupled ATP hydrolysis. J Bacteriol 158:1078–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fothergill-Gilmore LA, Michels PA (1993) Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235

    CAS  PubMed  Google Scholar 

  • Gabellini N, Gao Z, Eckerskorn C, Lottspeich F, Oesterhelt D (1988) Purification of the H+-ATPase from Rhodobacter capsulatus, identification of the F1FO components and reconstitution of the active enzyme. Biochim Biophys Acta 932:227–234

    Google Scholar 

  • García JJ, Morales-Ríos E, Cortés-Hernandez P, Rodríguez-Zavala J (2006) The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase. Biochemistry 45:12695–12703

    PubMed  Google Scholar 

  • García-Bermúdez J, Cuezva JM (2016) The ATPase inhibitory factor 1 (IF1): a master regulator of energy metabolism and of cell survival. Biochim Biophys Acta 1857:1167–1182

    PubMed  Google Scholar 

  • García-Trejo JJ, Morales-Ríos E (2008) Regulation of the F1F0-ATP synthase rotary Nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. J Biol Phys 34:197–212

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Trejo JJ, Zarco-Zavala M, Mendoza-Hoffmann F, Hernandez-Luna E, Ortega R, Mendoza-Hernandez G (2016) The inhibitory mechanism of the zeta subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and related alpha-Proteobacteria. J Biol Chem 291:538–546

    CAS  PubMed  Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria. Proc Natl Acad Sci U S A 104:15671–15676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Puyou A, Tuena de Gómez-Puyou M, Ernster L (1979) Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor. Biochim Biophys Acta 547:252–257

    PubMed  Google Scholar 

  • Gordon-Smith DJ, Carbajo RJ, Yang JC, Videler H, Runswick MJ, Walker JE, Neuhaus D (2001) Solution structure of a C-terminal coiled-coil domain from bovine IF(1): the inhibitor protein of F(1) ATPase. J Mol Biol 308:325–339

    CAS  PubMed  Google Scholar 

  • Groth G, Pohl E (2001) The structure of the chloroplast F1-ATPase at 3.2 Å resolution. J Biol Chem 276:1345–1352

    CAS  PubMed  Google Scholar 

  • Guo H, Bueler SA, Rubinstein JL (2017) Atomic model for the dimeric FO region of mitochondrial ATP synthase. Science 358:936–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammad N, Rosas-Lemus M, Uribe-Carvajal S, Rigoulet M, Devin A (2016) The Crabtree and Warburg effects: do metabolite-induced regulations participate in their induction? Biochim Biophys Acta 1857:1139–1146

    CAS  PubMed  Google Scholar 

  • Hanson RW (1989) The role of ATP in metabolism. Biochem Educ 17:86–92

    CAS  Google Scholar 

  • Harris DA, John P, Radda GK (1977) Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. I. the Paracoccus denitrificans system. Biochim Biophys Acta 459:546–559

    CAS  PubMed  Google Scholar 

  • Harrison MA, Muench SP (2018) The vacuolar ATPase – a Nano-scale motor that drives cell biology. Subcell Biochem 87:409–459

    PubMed  Google Scholar 

  • Hashimoto T, Negawa Y, Tagawa K (1981) Binding of intrinsic ATPase inhibitor to mitochondrial ATPase--stoichiometry of binding of nucleotides, inhibitor, and enzyme. J Biochem 90:1151–1157

    CAS  PubMed  Google Scholar 

  • Hausrath AC, Grüber G, Matthews BW, Capaldi RA (1999) Structural features of the γ subunit of the Escherichia coli F1 ATPase revealed by a 4.4-Å resolution map obtained by x-ray crystallography. Proc Natl Acad Sci U S A 96:13697–13702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iino R, Hasegawa R, Tabata KV, Noji H (2009) Mechanism of inhibition by C-terminal α-helices of the ϵ subunit of Escherichia coli FoF1-ATP synthase. J Biol Chem 284:17457–17464

    CAS  PubMed  PubMed Central  Google Scholar 

  • John P (1987) Paracoccus as a free-living mitochondrion. Ann N Y Acad Sci 503:140–151

    CAS  Google Scholar 

  • John P, Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254:495–498

    CAS  PubMed  Google Scholar 

  • Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 459:364–370

    CAS  PubMed  Google Scholar 

  • Kadoya F, Kato S, Watanabe K, Kato-Yamada Y (2011) ATP binding to the ϵ subunit of thermophilic ATP synthase is crucial for efficient coupling of ATPase and H+ pump activities. Biochem J 437:135–140

    CAS  PubMed  Google Scholar 

  • Kagawa Y, Racker E (1966) Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX Reconstruction of oligomycin-sensitive adenosine triphosphatase. J Biol Chem 241:2467–2474

    CAS  PubMed  Google Scholar 

  • Kamerlin SCL, Sharma PK, Prasad RB, Warshel A (2013) Why nature really chose phosphate. Q Rev Biophys 46:1–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Yoshida M, Kato-Yamada Y (2007) Role of the ϵ subunit of thermophilic F1-ATPase as a sensor for ATP. J Biol Chem 282:37618–37623

    CAS  PubMed  Google Scholar 

  • Klein G, Satre M, Dianoux AC, Vignais PV (1980) Radiolabeling of natural adenosine triphosphatase inhibitor with phenyl (14C)isothiocyanate and study of its interaction with mitochondrial adenosine triphosphatase. Localization of inhibitor binding sites and stoichiometry of binding. Biochemistry 19:2919–2925

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Brusilow WSA, Simoni RD (1984) In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol 160:1055–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 1980:877–919

    Google Scholar 

  • Koukourakis, M.I., and Giatromanolaki, A. (2018) Warburg effect, Lactate Dehydrogenase and Radio/Chemo-therapy efficacy. Int J Radiat Biol [Epub ahead of print]

  • Koumandow VL, Kossida S (2014) Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes. PLoS Comput Biol 10:e1003821

    Google Scholar 

  • Krah A, Kato-Yamada Y, Takada S (2017) The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase. PLoS One 12:e0177907

    PubMed  PubMed Central  Google Scholar 

  • Krah A, Zarco-Zavala M, McMillan DGG (2018) Insights into the regulatory function of the varepsilon subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 8

  • Krebs HA, Johnson WA (1980) The role of citric acid in intermediate metabolism in animal tissues. FEBS Lett 117:K2–K10

    Google Scholar 

  • Lau W, Rubinstein J (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+−driven ATP synthase. Nature 481:214–218

    CAS  Google Scholar 

  • Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox GB (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894:399–406

    CAS  PubMed  Google Scholar 

  • Lu YM, Miyazawa K, Yamaguchi K, Nowaki K, Iwatsuki H, Wakamatsu Y, Ichikawa N, Hashimoto T (2001) Deletion of mitochondrial ATPase inhibitor in the yeast Saccharomyces cerevisiae decreased cellular and mitochondrial ATP levels under non-nutritional conditions and induced a respiration-deficient cell-type. J Biochem 130:873–878

    CAS  PubMed  Google Scholar 

  • Lu J, Tan M, Cai Q (2014) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    PubMed  PubMed Central  Google Scholar 

  • Maldonado E, Dreyfus G, García JJ, Gómez-Puyou A, de Gómez-Puyou MT (1998) Unisite ATP hydrolysis by soluble Rhodospirillum rubrum F1-ATPase is accelerated by Ca2+. Biochim Biophys Acta 1363:70–78

    CAS  PubMed  Google Scholar 

  • Margulis L, Chapman MJ (1998) Endosymbioses: cyclical and permanent in evolution. Trends Microbiol 6:342–345 discussion 345-346

    CAS  PubMed  Google Scholar 

  • Martin JL, Ishmukhametov R, Spetzler D, Hornung T, Frasch WD (2018) Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. Proc Natl Acad Sci U S A 115:5750–5755

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DG, Ferguson SA, Dey D, Schroder K, Aung HL, Carbone V, Attwood GT, Ronimus RS, Meier T, Janssen PH et al (2011) A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions. J Biol Chem 286:39882–39892

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DG, Watanabe R, Ueno H, Cook GM, Noji H (2016) Biophysical characterization of a Thermoalkaliphilic molecular motor with a high stepping torque gives insight into evolutionary ATP synthase adaptation. J Biol Chem 291:23965–23977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Hoffmann F, Pérez-Oseguera A, Cevallos MA, Zarco-Zavala M, Ortega R, Peña-Segura C, Espinoza-Simón E, Uribe-Carvajal S, García-Trejo JJ (2018) The biological role of the ζ subunit as unidirectional inhibitor of the F1FO-ATPase of Paracoccus denitrificans. Cell Rep 22:1067–1078

    CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to Electron and hydrogen transfer by a Chemi-osmotic type of mechanism. Nature 191:144–148

    CAS  PubMed  Google Scholar 

  • Morales-Rios E, de la Rosa-Morales F, Mendoza-Hernandez G, Rodriguez-Zavala JS, Celis H, Zarco-Zavala M, Garcia-Trejo JJ (2010) A novel 11-kDa inhibitory subunit in the F1FO ATP synthase of Paracoccus denitrificans and related α-proteobacteria. FASEB J 24:599–608

    CAS  PubMed  Google Scholar 

  • Morales-Rios E, Montgomery MG, Leslie AGW, Walker JE (2015) Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proc Natl Acad Sci U S A 112:13231–13236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q Rev Biophys 44:311–356

    CAS  PubMed  Google Scholar 

  • Müller V, Grüber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494

    PubMed  Google Scholar 

  • Nakamura J, Fujikawa M, Yoshida M (2013) IF1, a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding of mice. Biosci Rep 33:735–741

    CAS  Google Scholar 

  • Nakanishi A, Kishikawa J-i, Tamakoshi M, Mitsuoka K, Yokoyama K (2018) Cryo EM structure of intact rotary H+-ATPase/synthase from Thermus thermophilus. Nat Commun 9:1–10

    CAS  Google Scholar 

  • Noji H, Yoshida M (2001) The rotary machine in the cell, ATP synthase. J Biol Chem 276:1665–1668

    CAS  PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    CAS  PubMed  Google Scholar 

  • Noji H, Ueno H, McMillan DGG (2017) Catalytic robustness and torque generation of the F1-ATPase. Biophys Rev 9:103–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 2014:553–584

    Google Scholar 

  • Oster G, Wang H (2000) Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim Biophys Acta 1458:482–510

    CAS  PubMed  Google Scholar 

  • Pacheco-Moisés F, García JJ, Rodríguez-Zavala JS, Moreno-Sánchez R (2000) Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans F0F1-ATPase. Eur J Biochem 267:993–1000

    PubMed  Google Scholar 

  • Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez JA, Ferguson SJ (1990) Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase. Biochemistry 29:10503–10518

    CAS  PubMed  Google Scholar 

  • Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T (2010) Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat Chem Biol 6:891–899

    CAS  PubMed  Google Scholar 

  • Pullman ME, Monroy GC (1963a) A naturally occurring inhibitor of mitochondrial adenosine Triphosphatase. J Biol Chem 238:3762–3769

    CAS  PubMed  Google Scholar 

  • Pullman ME, Monroy GC (1963b) A naturally Ocurring inhibitor of mitochondrial adenosine Triphosphatase. J Biol Chem 238:3762–3769

    CAS  PubMed  Google Scholar 

  • Rodgers AJ, Wilce MC (2000) Structure of the gamma-epsilon complex of ATP synthase. Nat Struct Biol 7:1051–1054

    CAS  PubMed  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773–777

    CAS  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    CAS  PubMed  Google Scholar 

  • Sánchez-Cenizo L, Formentini L, Aldea M, Ortega ÁD, García-Huerta P, Sánchez-Aragó M, Cuezva JM (2010) Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285:25308–25313

    PubMed  PubMed Central  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    PubMed  PubMed Central  Google Scholar 

  • Senior AE (2012) Two ATPases. J Biol Chem 287:30049–30062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano P, Geralt M, Mohanty B, Wüthrich K (2014) NMR structures of α-Proteobacterial ATPase-regulating ζ-subunits. J Mol Biol 426:2547–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shigemitsu Y, Hiroaki H (2018) Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis. J Biochem 163:11–18

    PubMed  Google Scholar 

  • Shirakihara Y, Shiratori A, Tanikawa H, Nakasako M, Yoshida M, Suzuki T (2015a) Structure of a thermophilic F1-ATPase inhibited by an epsilon-subunit: deeper insight into the epsilon-inhibition mechanism. FEBS J 282:2895–2913

    CAS  PubMed  Google Scholar 

  • Shirakihara Y, Shiratori A, Tanikawa H, Nakasako M, Yoshida M, Suzuki T (2015b) Structure of a thermophilic F1-ATPase inhibited by an ε-subunit: deeper insight into the ε-inhibition mechanism. FEBS J 282:2895–2913

    CAS  PubMed  Google Scholar 

  • Smith JB, Sternweis PC (1977) Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry 16:306–311

    CAS  PubMed  Google Scholar 

  • Sobti M, Smits C, Wong ASW, Ishmukhametov R, Stock D, Sandin S, Stewart AG (2016) Cryo-EM structures of the autoinhibited E coli ATP synthase in three rotational states. Elife 5:e21598

    PubMed  PubMed Central  Google Scholar 

  • Sotomayor-Pérez A-C, Ladant D, Chenal A (2015) Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins (Basel) 7:1–20

    Google Scholar 

  • Stewart AG, Sobti M, Harvey RP, Stock D (2013) Models, machine elements and technical specifications. Bioarchitecture 3:2–12

    PubMed  PubMed Central  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    CAS  PubMed  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schägger H (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase Supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279:5000–5007

    CAS  PubMed  Google Scholar 

  • Suzuki T, Murakami T, Iino R, Suzuki J, Ono S, Shirakihara Y, Yoshida M (2003) F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of ϵ subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278:46840–46846

    CAS  PubMed  Google Scholar 

  • Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M (2014) Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol 10:930–936

    CAS  PubMed  Google Scholar 

  • Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19:485–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunoda SP, Aggeler R, Noji H, Kinosita K, Yoshida M, Capaldi RA (2000) Observations of rotation within the FoF1-ATP synthase: deciding between rotation of the Foc subunit ring and artifact. FEBS Lett 470:244–248

    CAS  PubMed  Google Scholar 

  • Tsunoda SP, Rodgers AJ, Aggeler R, Wilce MC, Yoshida M, Capaldi RA (2001) Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc Natl Acad Sci U S A 98:6560–6564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuena de Gomez-Puyou MT, Muller U, Dreyfus G, Ayala G, Gomez-Puyou A (1983) Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein. J Biol Chem 258:13680–13684

    CAS  PubMed  Google Scholar 

  • Turina P, Rumberg B, Melandri BA, Graber P (1992) Activation of the H(+)-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus. J Biol Chem 267:11057–11063

    CAS  PubMed  Google Scholar 

  • Turina P, Giovannini D, Gubellini F, Melandri BA (2004) Physiological ligands ADP and pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus. Biochemistry 43:11126–11134

    CAS  PubMed  Google Scholar 

  • Uhlin U, Cox GB, Guss JM (1997) Crystal structure of the ϵ subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219–1230

    CAS  PubMed  Google Scholar 

  • Uversky VN (2016) Dancing protein clouds: the strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem 291:6681–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Raaij MJ, Orriss GL, Montgomery MG, Runswick MJ, Fearnley IM, Skehel JM, Walker JE (1996) The ATPase inhibitor protein from bovine heart mitochondria: the minimal inhibitory sequence. Biochemistry 35:15618–15625

    PubMed  Google Scholar 

  • Varghese F, Blaza JN, Jones AJY, Jarman OD, Hirst J (2018) Deleting the IF1-like zeta subunit from Paracoccus denitrificans ATP synthase is not sufficient to activate ATP hydrolysis. Open Biol 8

  • von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672

    Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16

    CAS  PubMed  Google Scholar 

  • Walker JE, Dickson VK (2006) The peripheral stalk of the mitochondrial ATP synthase. Biochim Biophys Acta 1757:286–296

    CAS  PubMed  Google Scholar 

  • Watanabe R, Iino R, Noji H (2010) Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat Chem Biol 6:814–820

    CAS  PubMed  Google Scholar 

  • Wilkens S, Capaldi RA (1998) Solution structure of the epsilon subunit of the F1-ATPase from Escherichia coli and interactions of this subunit with beta subunits in the complex. J Biol Chem 273:26645–26651

    CAS  PubMed  Google Scholar 

  • Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, Akutsu H (2007) Structures of the thermophilic F1-ATPase ε subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Proc Natl Acad Sci U S A 104:11233–11238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904

    CAS  PubMed  Google Scholar 

  • Yin T, Lu L, Xiong Z, Wei S, Cui D (2015) ATPase inhibitory factor 1 is a prognostic marker and contributes to proliferation and invasion of human gastric cancer cells. Biomed Pharmacother 70:90–96

    CAS  PubMed  Google Scholar 

  • Zarco-Zavala M, morales-Ríos E, Serrano-Navarro P, Wüthrich K, Mendoza-Hernández G, Ramírez-Silva L, García-Trejo JJ (2012) The ζ subunit of the α-proteobacterial F1FO-ATP synthase in Paracoccus denitrificans: a novel control mechanism of the central rotor. Biochim Biophys Acta 1817:S27–S28

    Google Scholar 

  • Zarco-Zavala, M., Morales-Ríos, E., Serrano-Navarro, P., Wüthrich, K., Mendoza-Hernández, G., Ramírez-Silva, L., García-Trejo, J.J. (2013). Corringendum to: The ζ subunit of the α-proteobacterial F1FO-ATP synthase in Paracoccus denitrificans: A novel control mechanism of the central rotor Biochimica et Biophysica Acta 1827, 60

  • Zarco-Zavala M, Morales-Ríos E, Mendoza-Hernández G, Ramírez-Silva L, Pérez-Hernández G, García-Trejo JJ (2014) The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure. FASEB J 28:2146–2157

    CAS  PubMed  Google Scholar 

  • Zarco-Zavala M, Mendoza-Hoffmann F, Garcia-Trejo JJ (2018) Unidirectional regulation of the F1FO-ATP synthase nanomotor by the zeta pawl-ratchet inhibitor protein of Paracoccus denitrificans and related alpha-proteobacteria. Biochim Biophys Acta 1859:762–774

    CAS  Google Scholar 

  • Zharova T, Vinogradov A (2003) Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic activity. Biochemistry (Mosc) 68:1101–1108

    CAS  Google Scholar 

  • Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL (2015) Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife 4

Download references

Acknowledgements

This work was supported by grants from México, (CONACyT) Grant CB-2011-01-167622 and U.N.A.M. (DGAPA) Grant PAPIIT- IN221216 (both to J. J. G.-T.). This work is part of PhD Thesis of FMH at the “Programa de Maestría y Doctorado en Ciencias Bioquímicas de la Universidad Nacional Autónoma de México (U.N.A.M.), with JJGT as PhD advisor. FMH was supported by CONACyT Ph.D. Fellowship 277245, and MZZ by CONACyT Fund I0010, Fellowship No. 277592. The kind help to improve the main text of this review paper is gratefully acknowledged to Pattie Nelson, Oregon, and to Prof. Duncan McMillan, Delft. The ζ knockout mutant of P. denitrificans was constructed in collaboration with Prof. Miguel Angel Cevallos from UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. García-Trejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Hoffmann, F., Zarco-Zavala, M., Ortega, R. et al. Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins. J Bioenerg Biomembr 50, 403–424 (2018). https://doi.org/10.1007/s10863-018-9773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-018-9773-9

Keywords

Navigation