Skip to main content
Log in

Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling?

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.e. the TCA and urea cycles), while others are produced “on demand” mainly in response to alterations in the microenvironment in order to participate in the activation of acute adaptive responses (Mills et al. 2016; Go et al. 2010). Reactive oxygen species (ROS) are well suited for the purpose of executing rapid and transient signaling due to their short lived nature (Bae et al. 2011). Hydrogen peroxide (H2O2), in particular, possesses important characteristics including diffusibility and faster reactivity with specific residues such as methionine, cysteine and selenocysteine (Bonini et al. 2014). Therefore, it is reasonable to propose that H2O2 functions as a relatively specific redox signaling molecule. Even though it is now established that mtH2O2 is indispensable, at least for hypoxic adaptation and energetic and/or metabolic homeostasis (Hamanaka et al. 2016; Guzy et al. 2005), the question of how H2O2 is produced and regulated in the mitochondria is only partially answered. In this review, some roles of this indispensable signaling molecule in driving cellular metabolism will be discussed. In addition, we will discuss how H2O2 formation in mitochondria depends on and is controlled by MnSOD. Finally, we will conclude this manuscript by highlighting why a better understanding of redox hubs in the mitochondria will likely lead to new and improved therapeutics of a number of diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharmacol 120:168–178

    Article  CAS  Google Scholar 

  • Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cell 32:491–509

    Article  CAS  Google Scholar 

  • Bonini MG et al (2014) Redox control of enzymatic functions: the electronics of life's circuitry. IUBMB Life

  • Borrello S, De Leo ME, Galeotti T (1993) Defective gene expression of MnSOD in cancer cells. Mol Asp Med 14:253–258

    Article  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  Google Scholar 

  • Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti Cancer Agents Med Chem 11:341–346

    Article  CAS  Google Scholar 

  • Butler J, Koppenol WH, Margoliash E (1982) Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. J Biol Chem 257:10747–10750

    CAS  Google Scholar 

  • Candas D et al (2013) CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol 5:166–175

    Article  CAS  Google Scholar 

  • Case AJ, Li S, Basu U, Tian J, Zimmerman MC (2013) Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 305:H19–H28

    Article  CAS  Google Scholar 

  • Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219–226

    Article  CAS  Google Scholar 

  • Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206

    Article  CAS  Google Scholar 

  • Chantranupong L et al (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–164

    Article  CAS  Google Scholar 

  • Chen Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12:534–541

    Article  CAS  Google Scholar 

  • Chen T et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One 10:e0118909

    Article  Google Scholar 

  • Choi SL et al (2001) The regulation of AMP-activated protein kinase by H(2)O(2). Biochem Biophys Res Commun 287:92–97

    Article  CAS  Google Scholar 

  • Connor KM et al (2005) Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280:16916–16924

    Article  CAS  Google Scholar 

  • Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496

    Article  CAS  Google Scholar 

  • D'Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Duggett NA et al (2016) Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 333:13–26

    Article  CAS  Google Scholar 

  • Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  Google Scholar 

  • Etchegaray JP, Mostoslavsky R (2016) Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell 62:695–711

    Article  CAS  Google Scholar 

  • Finley LW et al (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19:416–428

    Article  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    CAS  Google Scholar 

  • Ganini D, Petrovich RM, Edwards LL, Mason RP (2015) Iron incorporation into MnSOD a (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. Biochim Biophys Acta 1850:1795–1805

    Article  CAS  Google Scholar 

  • Giorgio M et al (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    Article  CAS  Google Scholar 

  • Go YM et al (2010) A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radic Biol Med 48:275–283

    Article  CAS  Google Scholar 

  • Graham KA et al (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10:223–231

    Article  CAS  Google Scholar 

  • Gu M, Viles JH (2016) Methionine oxidation reduces lag-times for amyloid-beta(1-40) fiber formation but generates highly fragmented fibers. Biochim Biophys Acta 1864:1260–1269

    Article  CAS  Google Scholar 

  • Guzy RD et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  CAS  Google Scholar 

  • Haigis MC, Deng CX, Finley LW, Kim HS, Gius D (2012) SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res 72:2468–2472

    Article  CAS  Google Scholar 

  • Hallows WC et al (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41:139–149

    Article  CAS  Google Scholar 

  • Hamanaka RB, Weinberg SE, Reczek CR, Chandel NS (2016) The mitochondrial respiratory chain is required for organismal adaptation to hypoxia. Cell Rep 15:451–459

    Article  CAS  Google Scholar 

  • Hart PC et al (2015) MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 6:6053

    Article  CAS  Google Scholar 

  • Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408

    CAS  Google Scholar 

  • Hirschhauser C et al (2015) NOX4 in mitochondria: yeast two-hybrid-based interaction with complex I without relevance for basal reactive oxygen species? Antioxid Redox Signal 23:1106–1112

    Article  Google Scholar 

  • Hu T, Chen K, Hu L, Amombo E, Fu J (2016) H2O2 and Ca2+−based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Sci Rep 6:36396

    Article  CAS  Google Scholar 

  • Irani K et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  Google Scholar 

  • Jacob C et al (2012) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 25:588–604

    Article  CAS  Google Scholar 

  • Jin C et al (2015) CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection. Free Radic Biol Med 81:77–87

    Article  CAS  Google Scholar 

  • Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(Suppl 2):116–125

    Article  CAS  Google Scholar 

  • Kaewpila S, Venkataraman S, Buettner GR, Oberley LW (2008) Manganese superoxide dismutase modulates hypoxia-inducible factor-1 alpha induction via superoxide. Cancer Res 68:2781–2788

    Article  CAS  Google Scholar 

  • Kalucka J et al (2015) Metabolic control of the cell cycle. Cell Cycle 14:3379–3388

    Article  CAS  Google Scholar 

  • Kim HS et al (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52

    Article  CAS  Google Scholar 

  • Kramer AC, Thulstrup PW, Lund MN, Davies MJ (2016) Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of beta-lactoglobulin. Free Radic Biol Med 97:544–555

    Article  CAS  Google Scholar 

  • Lee HY et al (2017) Mitochondrial targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation. Diabetes

  • Madungwe NB, Zilberstein NF, Feng Y, Bopassa JC (2016) Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. Am J Cardiovasc Dis 6:93–108

    Google Scholar 

  • Mills EL et al (2016) Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 167:457–470 e413

    Article  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: cu,Zn-SOD in Mitochondria. J Biol Chem 276:38388–38393

    Article  CAS  Google Scholar 

  • Okita K, Hong H, Takahashi K, Yamanaka S (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5:418–428

    Article  CAS  Google Scholar 

  • Ozden O et al (2011) Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3:102–107

    Article  CAS  Google Scholar 

  • Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40:435–445

    Article  CAS  Google Scholar 

  • Pillai VB et al (2015) Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun 6:6656

    Article  CAS  Google Scholar 

  • Pitkanen S, Robinson BH (1996) Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 98:345–351

    Article  CAS  Google Scholar 

  • Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  Google Scholar 

  • Powell RD, Goodenow DA, Mixer HV, McKillop IH, Evans SL (2016) Cytochrome C limits oxidative stress and decreases acidosis in a rat model of hemorrhagic shock and reperfusion injury. J Trauma Acute Care Surg

  • Redondo-Horcajo M et al (2010) Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovasc Res 87:356–365

    Article  CAS  Google Scholar 

  • Samuni A, Mimon E, Goldstein S (2016) Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H2O2, nitrite and metmyoglobin or methemoglobin. Free Radic Biol Med 101:491

    Article  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Current Biol: CB 24:R453–R462

    Article  CAS  Google Scholar 

  • Schumacker PT (2011) SIRT3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell 19:299–300

    Article  CAS  Google Scholar 

  • Selak MA et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  CAS  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671

    Article  CAS  Google Scholar 

  • Shaw RJ et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329–3335

    Article  CAS  Google Scholar 

  • Sullivan LB, Gui DY, Vander Heiden MG (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16:680–693

    Article  CAS  Google Scholar 

  • Tao R et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40:893–904

    Article  CAS  Google Scholar 

  • Thamsen M, Jakob U (2011) The redoxome: proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15:113–119

    Article  CAS  Google Scholar 

  • Tian G et al (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20:2606–2620

    Article  CAS  Google Scholar 

  • Tong Q et al (2016) MnTE-2-PyP modulates thiol oxidation in a hydrogen peroxide-mediated manner in a human prostate cancer cell. Free Radic Biol Med 101:32–43

    Article  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Valez V et al (2013) Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins. Arch Biochem Biophys 529:45–54

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7:308–317

    Article  Google Scholar 

  • Van Remmen H et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  Google Scholar 

  • Vassilopoulos A et al (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21:551–564

    Article  CAS  Google Scholar 

  • Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90:4304–4308

    Article  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  Google Scholar 

  • Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Asp Med 47-48:76–89

    Article  CAS  Google Scholar 

  • Wei L et al (2013) Oroxylin a induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 4:e601

    Article  CAS  Google Scholar 

  • Wenes M et al (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24:701–715

    Article  CAS  Google Scholar 

  • Yin F, Sancheti H, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17:1714–1727

    Article  CAS  Google Scholar 

  • Yin Y et al (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7:274ra218

    Article  Google Scholar 

  • Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 287:14078–14086

    Article  CAS  Google Scholar 

  • Yu W et al (2016) Loss of SIRT3 provides growth advantage for B cell malignancies. J Biol Chem 291:3268–3279

    Article  CAS  Google Scholar 

  • Zhang H, Osyczka A, Dutton PL, Moser CC (2007) Exposing the complex III Qo semiquinone radical. Biochim Biophys Acta 1767:883–887

    Article  CAS  Google Scholar 

  • Zhang Y et al (2010) Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts. Free Radic Biol Med 49:1255–1262

    Article  CAS  Google Scholar 

  • Zheng XT et al (2016) Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis. Mol Cell Biochem 425:125

    Article  Google Scholar 

  • Zhu Y et al (2014) SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer Metab 2:15

    Article  Google Scholar 

  • Zou X, Santa-Maria CA, O’Brien J, Gius D, Zhu Y (2016) Manganese superoxide dismutase acetylation and Dysregulation, due to loss of SIRT3 activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxid Redox Signal 25:326–336

    Article  CAS  Google Scholar 

  • Zou X et al (2017) SIRT3-mediated dimerization of IDH2 directs cancer cell metabolism and tumor growth. Cancer Res. doi:10.1158/0008-5472.CAN-16-2393

Download references

Financial support

D. Gius is supported by 2R01CA152601-A1, 1R01CA152799-01A1, 1R01CA168292- 01A1, 1R01CA214025-01, the Chicago Biomedical Consortium with support from the Searle Funds at The Chicago Community Trust, Zell Family Foundation, and the Avon Foundation for Breast Cancer Research. Y. Zhu is supported by a Robert H. Lurie Comprehensive Cancer Center Translation Bridge Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Ratti, B.A., O’Brien, J.G. et al. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling?. J Bioenerg Biomembr 49, 325–333 (2017). https://doi.org/10.1007/s10863-017-9718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9718-8

Keywords

Navigation