Skip to main content
Log in

On the mechanism of respiratory complex I

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy and X-ray crystallography revealed the two-part structure of the enzyme complex. A peripheral arm extending into the aqueous phase catalyzes the electron transfer reaction. Accordingly, this arm contains the redox-active cofactors, namely one flavin mononucleotide (FMN) and up to ten iron-sulfur (Fe/S) clusters. A membrane arm embedded in the lipid bilayer catalyzes proton translocation by a yet unknown mechanism. The binding site of the substrate (ubi) quinone is located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons across the membrane. In this review, the binding of the substrates, the intramolecular electron transfer, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amarneh B, Vik SB (2003) Mutagenesis of subunit N of the Escherichia coli complex I identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42:4800–4808

    CAS  Google Scholar 

  • Angerer H, Nasiri HR, Niedergesäß V, Kerscher S, Schwalbe H, Brandt U (2012) Tracing the tail of ubiquinone in mitochondrial complex I. Biochim Biophys Acta 1817:1776–1784

    CAS  Google Scholar 

  • Auriol C, Bestel-Corre G, Claude JB, Soucaille P, Meynial-Salles I (2011) Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proc Natl Acad Sci U S A 108:1278–1283

    CAS  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448

    CAS  Google Scholar 

  • Baranova EA, Holt PJ, Sazanov LA (2007) Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Mol Biol 366:140–154

    CAS  Google Scholar 

  • Belevich G, Euro L, Wikström M, Verkhovskaya M (2007) Role of the conserved arginine 274 and histidine 224 and 228 residues in the NuoCD subunit of complex I from Escherichia coli. Biochemistry 46:526–533

    CAS  Google Scholar 

  • Belevich G, Knuuti J, Verkhovsky MI, Wikström M, Verkhovskaya M (2011) Probing the mechanistic role of the long α-helix in subunit L of respiratory complex I from Escherichia coli by site-directed mutagenesis. Mol Microbiol 82:1086–1095

    CAS  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783

    CAS  Google Scholar 

  • Birrell JA, Hirst J (2010) Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. FEBS Lett 584:4247–4252

    CAS  Google Scholar 

  • Birrell JA, Morina K, Bridges HR, Friedrich T, Hirst J (2013) Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential. Biochem J 456:139–146

    CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1996) H+/e stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237

    CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    CAS  Google Scholar 

  • Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    CAS  Google Scholar 

  • Darrouzet E, Issartel JP, Lunardi J, Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38

    CAS  Google Scholar 

  • Djavadi-Ohaniance L, Hatefi Y (1975) Oxidation of NADPH by submitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD. J Biol Chem 250:9397–9403

    CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    CAS  Google Scholar 

  • Ernster L, Hoberman HD, Howard RL, King TE, Lee CP, Mackler B, Sottocasa G (1965) Stereospecificity of certain soluble and particulate preparations of mitochondrial reduced nicotinamide-adenine dinucleotide dehydrogenase from beef heart. Nature 207:940–941

    CAS  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134

    CAS  Google Scholar 

  • Fisher N, Rich PR (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162

    CAS  Google Scholar 

  • Friedrich T (1998) The NADH: Ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146

    CAS  Google Scholar 

  • Friedrich T (2001) Complex I: A chimaera of a redox and conformation driven proton-pump? J Bioenerg Biomembr 33:169–179

    CAS  Google Scholar 

  • Friedrich T, Hellwig P (2010) Redox-induced conformational changes within the Escherichia coli NADH ubiquinone oxidoreductase (complex I): an analysis by mutagenesis and FTIR spectroscopy. Biochim Biophys Acta 1797:659–663

    CAS  Google Scholar 

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–541

    CAS  Google Scholar 

  • Friedrich T, Steinmüller K, Weiss H (1995) The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 367:107–111

    CAS  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    CAS  Google Scholar 

  • Galkin A, Dröse S, Brandt U (2006) The proton pumping stoichiometry of purified mitochondrial complex I reconstituted in proteoliposomes. Biochim Biophys Acta 1757:1575–1581

    CAS  Google Scholar 

  • Golinelli MP, Akin LA, Crouse BR, Johnson MK, Meyer J (1996) Cysteine lignad swapping on a deletable loop of the [2Fe-2S] ferredoxin from Clostridium pasteurianum. Biochemistry 35:8995–9002

    CAS  Google Scholar 

  • Golinelli MP, Chatelet C, Duin EC, Johnson MK, Meyer J (1998) Extensive ligand rearrangements around the [2Fe-2S] cluster of Clostridium pasteurianum ferredoxin. Biochemistry 37:10429–10437

    CAS  Google Scholar 

  • Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA (2003) The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278:25731–25737

    CAS  Google Scholar 

  • Grigorieff N (1999) Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9:476–483

    CAS  Google Scholar 

  • Guénebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 276:105–112

    Google Scholar 

  • Gunner MR, Saleh MA, Cross E, ud-Doula A, Wise M (2000) Backbone diploes generate positive potentials in all proteins: origins and implications of the effect. Biophys J 78:1126–1144

  • Gurrath M, Friedrich T (2004) Adjacent cysteines are capable of ligating the same tetranuclear iron-sulfur cluster. Proteins Struct Funct Bioinforma 56:556–563

    CAS  Google Scholar 

  • Hatefi Y, Hanstein WG (1973) Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria. Biochemistry 12:3515–3522

    CAS  Google Scholar 

  • Hayashi T, Stuchebrukhov AA (2010) Electron tunneling in respiratory complex I. Proc Natl Acad Sci U S A 107:19157–19162

    CAS  Google Scholar 

  • Hellwig P, Scheide D, Bungert S, Mäntele W, Friedrich T (2000) FTIR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain. Biochemistry 39:10884–10891

    CAS  Google Scholar 

  • Hielscher R, Yegres M, Voicescu M, Gnandt E, Friedrich T, Hellwig P (2013) Characterization of two quinone radicals in the NADH:ubiquinone oxidoreductase from Escherichia coli by a combined fluorescence spectroscopic and electrochemical approach. Biochemistry 52:8993–9000

    CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413–4420

    CAS  Google Scholar 

  • Hirst J (2013) Mitochondrial complex I. Annu Rev Biochem 82:551–575

    CAS  Google Scholar 

  • Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labelling. Structure 4:779–783

    CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    CAS  Google Scholar 

  • Ifuku K, Endo T, Shikanai T, Aro EM (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52:1560–1568

    CAS  Google Scholar 

  • Ingledew WJ, Ohnishi T (1980) An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J 186:111–117

    CAS  Google Scholar 

  • Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. ChemPhysChem 3:927–932

    CAS  Google Scholar 

  • Kaila VR, Wikström M, Hummer G (2014) Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proc Natl Acad Sci U S A 111:6988–6993

    CAS  Google Scholar 

  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276:24082–24087

    CAS  Google Scholar 

  • Kikuno R, Miyata T (1985) Sequence homologies among mitochondrial DNA-coded URF2, URF4 and URF5. FEBS Lett 189:85–88

    CAS  Google Scholar 

  • Knuuti J, Belevich G, Sharma V, Bloch DA, Verkhovskaya M (2013) A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli. Mol Microbiol 90:1190–1200

    CAS  Google Scholar 

  • Kohlstädt M, Dörner K, Labatzke R, Koç C, Hielscher R, Schiltz E, Einsle O, Hellwig P, Friedrich T (2008) Heterologous production, isolation, characterization and crystallization of a soluble fragment of the NADH:ubiquinone oxidoreductase (complex I) from Aquifex aeolicus. Biochemistry 47:13036–13045

    Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103:7607–7612

    CAS  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    CAS  Google Scholar 

  • Masuya T, Murai M, Ifuku K, Morisaka H, Miyoshi H (2014) Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry. Biochemistry 53:2307–2317

    CAS  Google Scholar 

  • Mathiesen C, Hagerhall C (2003) The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit - a revision of the modular evolution scheme. FEBS Lett 549:7–13

    CAS  Google Scholar 

  • Meyer J, Andrade SL, Einsle O (2008) Thioredoxin-like [2Fe-2S] ferredoxin, Handbook of Metalloproteins (Messerschmidt, A., ed.) John Wiley & Sons, New York

  • Moparthi VK, Kumar B, Mathiesen C, Hägerhäll C (2011) Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochim Biophys Acta 1807:427–436

    CAS  Google Scholar 

  • Morina K, Schulte M, Hubrich F, Dörner K, Steimle S, Stolpe S, Friedrich T (2011) Engineering the respiratory complex I to an energy-converting NADPH:ubiquinone oxidoreductase. J Biol Chem 286:34627–34634

    CAS  Google Scholar 

  • Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109

    CAS  Google Scholar 

  • Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T (2003) The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42:746–754

    CAS  Google Scholar 

  • Nakamaru-Ogiso E, Yano T, Yagi T, Ohnishi T (2005) Characterization of the iron-sulfur cluster N7 (N1c) in the subunit NuoG of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 280:301–307

    CAS  Google Scholar 

  • Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T, Ohnishi T (2010) The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor. FEBS Lett 584:883–888

    CAS  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    CAS  Google Scholar 

  • Ohnishi T (2010) Piston drives a proton pump. Nature 465:428–429

    CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E (2008) Were there any “misassignments” among iron-sulfur clusters N4, N5 and N6b in NADH-quinone oxidoreductase (complex I)? Biochim Biophys Acta 1777:703–710

    CAS  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555–4561

    CAS  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010a) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1891–1893

    CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST (2010b) A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett 584:4131–4137

    CAS  Google Scholar 

  • Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S, Ohnishi T (2010c) New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Biochim Biophys Acta 1797:1901–1909

    CAS  Google Scholar 

  • Ohshima M, Miyoshi H, Sakamoto K, Takegami K, Iwata J, Kuwabara K, Iwamura H, Yagi T (1998) Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones. Biochemistry 37:6436–6445

    CAS  Google Scholar 

  • Peng G, Fritzsch G, Zickermann V, Schägger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H (2003) Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus. Biochemistry 42:3032–3039

    CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    CAS  Google Scholar 

  • Pohl T, Uhlmann M, Kaufenstein M, Friedrich T (2007a) Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 46:10694–10702

    CAS  Google Scholar 

  • Pohl T, Bauer T, Dörner K, Stolpe S, Sell P, Zocher G, Friedrich T (2007b) Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 46:6588–6596

    CAS  Google Scholar 

  • Pohl T, Walter J, Stolpe S, Defeu Soufo HJ, Graumann PL, Friedrich T (2007c) Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC Biochem 8:13

    Google Scholar 

  • Pohl T, Spatzal T, Aksoyoglu M, Schleicher E, Rostas AM, Lay H, Glessner U, Boudon C, Hellwig P, Weber S, Friedrich T (2010) Spin labeling of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1894–1900

    CAS  Google Scholar 

  • Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (2010) Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance. Proc Natl Acad Sci U S A 107:1930–1935

    CAS  Google Scholar 

  • Rothery RA, Workun GJ, Weiner JH (2008) The prokaryotic complex iron-sulfur molybdoenzyme family. Biochim Biophys Acta 1778:1897–1929

    CAS  Google Scholar 

  • Sato M, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T (2013) Energy transducing roles of antiporter-like subunits in Escherichia coli NDH-1 with main focus on subunit NuoN (ND2). J Biol Chem 288:24705–24716

    CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    CAS  Google Scholar 

  • Sazanov LA, Baradaran R, Efremov RG, Berrisford JM, Minhas G (2013) A long road towards the structure of respiratory complex I, a giant molecular proton pump. Biochem Soc Trans 41:1265–1271

    CAS  Google Scholar 

  • Schuler F, Yano T, DiBernardo S, Yagi T, Yankovskaya V, Singer T, Casida JE (1999) NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc Natl Acad Sci U S A 96:4149–4153

    CAS  Google Scholar 

  • Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159:261–267

    CAS  Google Scholar 

  • Sekiguchi K, Murai M, Miyoshi H (2009) Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim Biophys Acta 1787:1106–1111

    CAS  Google Scholar 

  • Sharpley MS, Shannon RJ, Draghi F, Hirst J (2006) Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45:241–248

    CAS  Google Scholar 

  • Sled VD, Rudnitzky NI, Hatefi Y, Ohnishi T (1994) Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochemistry 33:10069–10075

    CAS  Google Scholar 

  • Steimle S, Bajzath C, Dörner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50:3386–3393

    CAS  Google Scholar 

  • Steimle S, Willistein M, Hegger P, Janoschke M, Erhardt H, Friedrich T (2012) Asp563 of the horizontal helix of subunit NuoL is involved in proton translocation by the respiratory complex I. FEBS Lett 586:699–704

    CAS  Google Scholar 

  • Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J 73:3287–3298

    CAS  Google Scholar 

  • Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383

    CAS  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 1797:1883–1890

    CAS  Google Scholar 

  • Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T (2011) Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli. J Biol Chem 286:34007–34014

    CAS  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234

    CAS  Google Scholar 

  • van Hellemond JJ, van der Klei A, van Weelden SW, Tielens AG (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond B Biol Sci 358:205–213

    Google Scholar 

  • Verkhovskaya M, Wikström M (2014) Oxidoreduction properties of bound ubiquinone in complex I from Escherichia coli. Biochim Biophys Acta 1837:246–250

    CAS  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikström M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A 105:3763–3767

    CAS  Google Scholar 

  • Vinogradov AD (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta 1364:169–185

    CAS  Google Scholar 

  • Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324

    CAS  Google Scholar 

  • Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. J Mol Biol 233:109–122

    CAS  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197:563–576

    CAS  Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304

    Google Scholar 

  • Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109:4431–4436

    Google Scholar 

  • Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236

    CAS  Google Scholar 

  • Wittekindt C, Schwarz M, Friedrich T, Koslowski T (2009) Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics. J Am Chem Soc 131:8134–8140

    CAS  Google Scholar 

  • Yagi T (1986) Purification and characterization of NADH dehydrogenase complex from Paracoccus denitrificans. Arch Biochem Biophys 250:302–311

    CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266–2274

    CAS  Google Scholar 

  • Yagi T, Yano T, Matsuno-Yagi A (1993) Characteristics of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans as revealed by biochemical, biophysical, and molecular biological approaches. J Bioenerg Biomembr 25:339–345

    CAS  Google Scholar 

  • Yagi T, Yano T, DiBernardo S, Matsuno-Yagi A (1998) Procaryotic complex I (NDH-1), an overview. Biochim Biophys Acta 1364:125–133

    CAS  Google Scholar 

  • Yano T, Chu SS, Sled, VD, Ohnishi, T, Yagi, T (1997) The proton-translocating NADH-quinone oxidoreductase (NDH-1) of the thermophilic bacterium Thermus thermophilus HB-8. J Biol Chem 272:4201–4211

  • Yano T, Magnitsky S, Ohnishi T (2000) Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. Biochim Biophys Acta 1459:299–304

    CAS  Google Scholar 

  • Yano T, Dunham WR, Ohnishi T (2005) Characterization of the delta μH+-sensitive ubisemiquinone species (SQNf) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 44:1744–1754

    CAS  Google Scholar 

  • Yeh AP, Ambroggio XI, Andrade SLA, Einsle O, Chatelet C, Meyer J, Rees DC (2002) High resolution crystal structures of the wild type and Cys-55 → Ser and Cys-59 → Ser variants of the thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. J Biol Chem 277:34499–34507

    CAS  Google Scholar 

  • Yip CY, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA (2011) Evolution of respiratory complex I: “supernumerary” subunits are present in the alpha-proteobacterial enzyme. J Biol Chem 286:5023–5033

    CAS  Google Scholar 

  • Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U (2003) Functional implications from an unexpected position of the 49-kDa subunit of NADH:ubiquinone oxidoreductase. J Biol Chem 278:29072–29078

    CAS  Google Scholar 

  • Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U (2006) The redox-bohr group associated with iron-sulfur cluster N2 of complex I. J Biol Chem 281:23013–23017

    CAS  Google Scholar 

Download references

Acknowledgments

The author’s work was supported by the Deutsche Forschungsgemeinschaft and by the Volkswagen Stiftung. I would like to thank Veronique Ragot for her help in correcting the manuscript and Klaudia Morina and Marius Schulte for their help in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Friedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, T. On the mechanism of respiratory complex I. J Bioenerg Biomembr 46, 255–268 (2014). https://doi.org/10.1007/s10863-014-9566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9566-8

Keywords

Navigation