Skip to main content

Advertisement

Log in

The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The fungal and plant plasma membrane H+-ATPases play critical roles in the physiology of yeast, plant and protozoa cells. We identified two genes encoding two plasma membrane H+-ATPases in the basidiomycete Ustilago maydis, one protein with higher identity to fungal (um02581) and the other to plant (um01205) H+-ATPases. Proton pumping activity was 5-fold higher when cells were grown in minimal medium with ethanol compared to cells cultured in rich YPD medium, but total vanadate-sensitive ATPase activity was the same in both conditions. In contrast, the activity in cells cultured in minimal medium with glucose was 2-fold higher than in YPD or ethanol, implicating mechanisms for the regulation of the plasma membrane ATPase activity in U. maydis. Analysis of gene expression of the H+-ATPases from cells grown under different conditions, showed that the transcript expression of um01205 (plant-type) was higher than that of um02581 (fungal-type). The translation of the two proteins was confirmed by mass spectrometry analysis. Unlike baker’s yeast and plant H+-ATPases, where the activity is increased by a short incubation with glucose or sucrose, respectively, U. maydis H+-ATPase activity did not change in response to these sugars. Sequence analysis of the two U. maydis H+-ATPases revealed the lack of canonical threonine and serine residues which are targets of protein kinases in Saccharomyces cerevisiae and Arabidopsis thaliana plasma membrane H+-ATPases, suggesting that phosphorylation of the U. maydis enzymes occurs at different amino acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banuett F (1992) Ustilago maydis, the delightful blight. Trends Genet 8(5):174–180

    Article  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S et al (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141. doi:10.1093/nar/gkh121

    Article  CAS  Google Scholar 

  • Baunsgaard L, Fuglsang AT, Jahn T, Korthout HA, de Boer AH, Palmgren MG (1998) The 14-3-3 proteins associate with the plant plasma membrane H(+)-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13(5):661–671

    Article  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M et al (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132(2):618–628. doi:10.1104/pp.103.021923

    Article  CAS  Google Scholar 

  • Benito B, Portillo F, Lagunas R (1992) In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation. Identification of the regulatory domain that controls activation. FEBS Lett 300(3):271–274

    Article  CAS  Google Scholar 

  • Dame JB, Scarborough GA (1980) Identification of the hydrolytic moiety of the Neurospora crassa plasma membrane H+-ATPase and demostration of a phosphoryl-enzime intermediate in its catalytic mechanism. Biochemistry 19:2931–2937

    Article  CAS  Google Scholar 

  • Dame JB, Scarborough GA (1981) Identification of the phosphorylated intermediate of the Neurospora plasma membrane H+-ATPase as b-aspartyl phosphate. J Biol Chem 256:10724–10730

    CAS  Google Scholar 

  • Doehlemann G, Wahl R, Vranes M, de Vries RP, Kamper J, Kahmann R (2008) Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165(1):29–40. doi:10.1016/j.jplph.2007.05.016

    Article  CAS  Google Scholar 

  • Dufour JP, Goffeau A (1978) Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J Biol Chem 253(19):7026–7032

    CAS  Google Scholar 

  • Dufour JP, Amory A, Goffeau A (1988) Plasma membrane ATPase from the yeast Schizosaccharomyces pombe. Methods Enzymol 157:513–528

    Article  CAS  Google Scholar 

  • Eraso P, Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224(1):187–192

    Article  CAS  Google Scholar 

  • Fernandes AR, Sa-Correia I (2003) Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Yeast 20(3):207–219. doi:10.1002/yea.957

    Article  CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcon-Aguilar C (2000) The plasma membrane H(+)-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37(2):112–118

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400

    CAS  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B et al (1999) Binding of 14-3-3 protein to the plasma membrane H(+)-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J Biol Chem 274(51):36774–36780

    Article  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  Google Scholar 

  • Ghislain M, Schlesser A, Goffeau A (1987) Mutation of a conserved glycine residue modifies the vanadate sensitivity of the plasma membrane H+-ATPase from Schizosaccharomyces pombe. J Biol Chem 262(36):17549–17555

    CAS  Google Scholar 

  • Gonzalez-Zamorano M, Mendoza-Hernandez G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F et al (2009) Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 8(2):721–733. doi:10.1021/pr800756a

    Article  CAS  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP et al (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209

    Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32. doi:10.1093/nar/gkr947

    Article  CAS  Google Scholar 

  • Hager KM, Mandala SM, Davenport JW, Speicher DW, Benz EJ Jr, Slayman CW (1986) Amino acid sequence of the plasma membrane ATPase of Neurospora crassa: deduction from genomic and cDNA sequences. Proc Natl Acad Sci U S A 83(20):7693–7697

    Article  CAS  Google Scholar 

  • Hayashi M, Inoue S, Takahashi K, Kinoshita T (2011) Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol 52(7):1238–1248. doi:10.1093/pcp/pcr072

    Article  CAS  Google Scholar 

  • Holliday R (1974) Ustilago maydis. In: RC King (ed) Handbook of genetics. Plenum, New York

  • Ingrell CR, Miller ML, Jensen ON, Blom N (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23(7):895–897. doi:10.1093/bioinformatics/btm020

    Article  CAS  Google Scholar 

  • Ito H, Oshiro T, Fujita Y, Kubota S, Naito C, Ohtsuka H et al (2010) Pma1, a P-type proton ATPase, is a determinant of chronological life span in fission yeast. J Biol Chem 285(45):34616–34620. doi:10.1074/jbc.M110.175562

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabala K (2012) Abscisic acid and hydrogen peroxide induce modification of plasma membrane H(+)-ATPase from Cucumis sativus L. roots under heat shock. J Plant Physiol 169(16):1607–1614. doi:10.1016/j.jplph.2012.05.013

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Wdowikowska A, Klobus G (2013) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170(10):915–922. doi:10.1016/j.jplph.2013.02.002

    Article  CAS  Google Scholar 

  • Kotyk A, Georghiou G (1993) Effects of the physiological state of five yeast species on H(+)-ATPase-related processes. Folia Microbiol (Praha) 38(6):467–472

    Article  CAS  Google Scholar 

  • Kurtzman C, Fell JW (1998) The yeast: A taxonomic study. In: Kurtzman CP, Fell JW (ed). Elsevier

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  • Lauriere M (1993) A semidry electroblotting system efficiently transfers both high- and low-molecular-weight proteins separated by SDS-PAGE. Anal Biochem 212(1):206–211. doi:10.1006/abio.1993.1313

    Article  CAS  Google Scholar 

  • Lecchi S, Allen KE, Pardo JP, Mason AB, Slayman CW (2005) Conformational changes of yeast plasma membrane H(+)-ATPase during activation by glucose: role of threonine-912 in the carboxy-terminal tail. Biochemistry 44(50):16624–16632. doi:10.1021/bi051555f

    Article  CAS  Google Scholar 

  • Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ et al (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282(49):35471–35481. doi:10.1074/jbc.M706094200

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Lutsenko S, Kaplan JH (1995) Organization of P-type ATPases: significance of structural diversity. Biochemistry 34(48):15607–15613

    Article  CAS  Google Scholar 

  • Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286(1):1–51

    Article  Google Scholar 

  • Monteiro GA, Supply P, Goffeau A, Sa-Correia I (1994) The in vivo activation of Saccharomyces cerevisiae plasma membrane H(+)-ATPase by ethanol depends on the expression of the PMA1 gene, but not of the PMA2 gene. Yeast 10(11):1439–1446. doi:10.1002/yea.320101107

    Article  CAS  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. Biochim Biophys Acta 1469(3):133–157

    Article  CAS  Google Scholar 

  • Nakamoto RK, Rao R, Slayman CW (1989) Transmembrane segments of the P-type cation-transporting ATPases. A comparative study. Ann N Y Acad Sci 574:165–179

    Article  CAS  Google Scholar 

  • Nakamoto RK, Rao R, Slayman CW (1991) Expression of the yeast plasma membrane [H+]ATPase in secretory vesicles. A new strategy for directed mutagenesis. J Biol Chem 266(12):7940–7949

    CAS  Google Scholar 

  • Navon G, Shulman RG, Yamane T, Eccleshall TR, Lam KB, Baronofsky JJ et al (1979) Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18(21):4487–4499

    Article  CAS  Google Scholar 

  • Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N, Weyand M et al (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell 25(3):427–440. doi:10.1016/j.molcel.2006.12.017

    Article  CAS  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450(7172):1111–1114. doi:10.1038/nature06417

    Article  CAS  Google Scholar 

  • Perez-Martin J, Castillo-Lluva S, Sgarlata C, Flor-Parra I, Mielnichuk N, Torreblanca J et al (2006) Pathocycles: ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics 276(3):211–229. doi:10.1007/s00438-006-0152-6

    Article  CAS  Google Scholar 

  • Piette AS, Derua R, Waelkens E, Boutry M, Duby G (2011) A phosphorylation in the c-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins. J Biol Chem 286(21):18474–18482. doi:10.1074/jbc.M110.211953

    Article  CAS  Google Scholar 

  • Portillo F, Mazon MJ (1985) Activation of yeast plasma membrane ATPase by phorbol ester. FEBS Lett 192(1):95–98

    Article  CAS  Google Scholar 

  • Rosa MF, Sa-Correia I (1991) In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol 57(3):830–835

    CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  • Saavedra E, Ramos-Casillas LE, Marin-Hernandez A, Moreno-Sanchez R, Guerra-Sanchez G (2008) Glycolysis in Ustilago maydis. FEMS Yeast Res 8(8):1313–1323. doi:10.1111/j.1567-1364.2008.00437.x

    Article  CAS  Google Scholar 

  • Scarborough GA (2000) Crystallization, structure and dynamics of the proton-translocating P-type ATPase. J Exp Biol 203(Pt 1):147–154

    CAS  Google Scholar 

  • Schlesser A, Ulaszewski S, Ghislain M, Goffeau A (1988) A second transport ATPase gene in Saccharomyces cerevisiae. J Biol Chem 263(36):19480–19487

    CAS  Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156(1):11–14

    Article  CAS  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319(6055):689–693. doi:10.1038/319689a0

    Article  CAS  Google Scholar 

  • Sharma SK, Carew TJ (2002) Inclusion of phosphatase inhibitors during Western blotting enhances signal detection with phospho-specific antibodies. Anal Biochem 307(1):187–189

    Article  CAS  Google Scholar 

  • Sigler K, Hofer M (1991) Mechanisms of acid extrusion in yeast. Biochim Biophys Acta 1071(4):375–391

    Article  CAS  Google Scholar 

  • Sigler K, Knotkova A, Paca J, Wurst M (1980) Extrusion of metabolites from baker’s yeast during glucose-induced acidification. Folia Microbiol (Praha) 25(4):311–317

    Article  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. roles of the plasma membrane H+-ATPase. Plant Physiol 136(1):2475–2482. doi:10.1104/pp.104.048231

    Article  CAS  Google Scholar 

  • Steinberg G, Perez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18(2):61–67. doi:10.1016/j.tcb.2007.11.008

    Article  CAS  Google Scholar 

  • Struck C, Siebels C, Rommel O, Wernitz M, Hahn M (1998) The plasma membrane H(+)-ATPase from the biotrophic rust fungus Uromyces fabae: molecular characterization of the gene (PMA1) and functional expression of the enzyme in yeast. Mol Plant Microbe Interact 11(6):458–465. doi:10.1094/MPMI.1998.11.6.458

    Article  CAS  Google Scholar 

  • Supply P, Wach A, Thines-Sempoux D, Goffeau A (1993) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem 268(26):19744–19752

    CAS  Google Scholar 

  • Sychrova H, Kotyk A (1985) Conditions of activation of yeast plasma membrane ATPase. FEBS Lett 183(1):21–24

    Article  CAS  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159(2):632–641. doi:10.1104/pp.112.196428

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405(6787):647–655. doi:10.1038/35015017

    Article  CAS  Google Scholar 

  • Tuduri P, Nso E, Dufour JP, Goffeau A (1985) Decrease of the plasma membrane H+-ATPase activity during late exponential growth of Saccharomyces cerevisiae. Biochem Biophys Res Commun 133(3):917–922

    Article  CAS  Google Scholar 

  • Ulaszewski S, Hilger F, Goffeau A (1989) Cyclic AMP controls the plasma membrane H+-ATPase activity from Saccharomyces cerevisiae. FEBS Lett 245(1–2):131–136

    Article  CAS  Google Scholar 

  • Viegas CA, Sa-Correia I (1991) Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol 137(3):645–651

    Article  CAS  Google Scholar 

  • Viegas CA, Supply P, Capieaux E, Van Dyck L, Goffeau A, Sa-Correia I (1994) Regulation of the expression of the H(+)-ATPase genes PMA1 and PMA2 during growth and effects of octanoic acid in Saccharomyces cerevisiae. Biochim Biophys Acta 1217(1):74–80

    Article  CAS  Google Scholar 

  • Viegas CA, Sebastiao PB, Nunes AG, Sa-Correia I (1995) Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl Environ Microbiol 61(5):1904–1909

    CAS  Google Scholar 

  • Wurst M, Sigler K, Knotkova A (1980) Gas chromatographic determination of extracellular metabolites produced by baker’s yeast during glucose-induced acidification. Folia Microbiol (Praha) 25(4):306–310

    Article  CAS  Google Scholar 

  • Zhang J, Byrne CD (1999) Differential priming of RNA templates during cDNA synthesis markedly affects both accuracy and reproducibility of quantitative competitive reverse-transcriptase PCR. Biochem J 337(Pt 2):231–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Pablo Pardo or Guadalupe Guerra-Sánchez.

Additional information

Juan Pablo Pardo and Guadalupe Guerra-Sánchez contributed equally to this work.

Guillermo Mendoza-Hernández in memory to his contribution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOCX 44 kb)

Online Resource 2

(DOCX 26 kb)

Online Resource 3

(DOCX 131 kb)

Online Resource 4

(DOCX 23 kb)

Online Resource 5

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles-Martínez, L., Pardo, J.P., Miranda, M. et al. The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants. J Bioenerg Biomembr 45, 477–490 (2013). https://doi.org/10.1007/s10863-013-9520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9520-1

Keywords

Navigation