Skip to main content
Log in

Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Trans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe2+ + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria. Under calcium-mediated stress, there was a 2.7-fold increase in the NO levels, and a mild decoupling in the mitochondrial respiratory chain. These results provide a mechanism for and support the beneficial effects of resveratrol under pathological conditions induced by oxidative stress and calcium overload. In addition, these findings underscore the usefulness of resveratrol in the prevention of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerboom TP, Siess H (1981) Meth Enzymol 77:373–382

    Article  Google Scholar 

  • Ananthakrishnan R, Kaneko M, Hwang YC, Quadri N, Gómez T, Li Q, Caspersen C, Ramasamy R (2009) Am J Physiol Heart Circ Physiol 296:H333–H341

    Article  CAS  Google Scholar 

  • Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I (2010) Biochem Biophys Res Commun 393:66–72

    Article  CAS  Google Scholar 

  • Blake GJ, Ridker PM (2001) Circ Res 89:763–771

    Article  CAS  Google Scholar 

  • Borutaite V, Jekabsone A, Morkuniene R, Brown GC (2003) J Mol Cell Cardiol 35:357–366

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Meth Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Calderón-Cortés E, Cortés-Rojo C, Clemente-Guerrero M, Manzo-Ávalos S, Villalobos-Molina R, Boldogh I, Saavedra-Molina A (2008) Mitochondrion 8:262–272

    Article  Google Scholar 

  • Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Skene AM (2004) N Engl J Med 350:1495–1504

    Article  CAS  Google Scholar 

  • Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I (1991) N Engl J Med 324:1149–1155

    Article  CAS  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Manzo-Ávalos S, Uribe S, Boldogh I, Saavedra-Molina A (2007) Free Radic Res 41:1212–1223

    Article  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Ávalos S, Mejía-Zepeda R, Boldogh I, Saavedra-Molina A (2009) J Bioenerg Biomembr 41:15–28

    Article  Google Scholar 

  • Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Free Radic Biol Med 46:1589–1597

    Article  Google Scholar 

  • Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Am J Physiol Cell Physiol 286:C406–C415

    Article  CAS  Google Scholar 

  • Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Pérez-Pinzón MA (2009) Neuroscience 159:993–1002

    Article  CAS  Google Scholar 

  • Fan X, Mattheis JP (2001) J Food Sci 66:200–203

    Article  CAS  Google Scholar 

  • Ghafourifar P, Richter C (1997) FEBS Lett 418:291–296

    Article  CAS  Google Scholar 

  • Ghafourifar P, Saavedra-Molina A (2006) In: Lamas S, Cadenas E (eds) Nitric oxide, cell signaling, and gene expression. CRC Taylor and Francis, New York, pp 77–98

    Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PI, Wishnok JS, Tannenbaum SR (1982) Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  • Griffiths EJ, Rutter GA (2009) Biochim Biophys Acta 1787:1324–1333

    Article  CAS  Google Scholar 

  • Gunter TE, Gunter KK, Sheu Sh-Sh, Gavin CE (1994) Am J Physiol 267:C313–C339

    CAS  Google Scholar 

  • Hattori R, Otani H, Maulik N, Das DK (2002) Am J Physiol Heart Circ Physiol 282:H1988–H1995

    CAS  Google Scholar 

  • Hung LM, Su MJ, Chu WK, Chiao CW, Chan WF, Chen JK (2002) Br J Pharmacol 135:1627–1633

    Article  CAS  Google Scholar 

  • Jia Z, Zhu H, Misra BR, Mahaney JE, Li Y, Misra HP (2008) Mol Cell Biochem 313:187–194

    Article  CAS  Google Scholar 

  • Karlsson J, Emgard M, Brundin P, Burkitt MJ (2000) J Neurochem 75:141–150

    Article  CAS  Google Scholar 

  • Kim HJ, Chang EJ, Cho SH, Chung SK, Park HD, Choi SW (2002) Biosci Biotechnol Biochem 66:1990–1993

    Article  CAS  Google Scholar 

  • Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G, Wu J, Ungvari Z (2006) Curr Med Chem 13:989–996

    Article  CAS  Google Scholar 

  • Leary SC, Michaud D, Lyons CN, Hale TM, Bushfield TL, Adams MA, Moyes CD (2002) Am J Physiol Heart Circ Physiol 283:H540–H548

    CAS  Google Scholar 

  • Lu C, Armstrong JS (2007) Biochem Biophys Res Commun 363:572–577

    Article  CAS  Google Scholar 

  • Moreno-Sánchez R, Hansford GR (1988) Biochem J 256:403–412

    Google Scholar 

  • Mukamal KJ, Conigrave KM, Mittleman MA, Camargo CA Jr, Stampfer MJ, Willet WC, Rimm EB (2003) N Engl J Med 348:109–118

    Article  Google Scholar 

  • Paradies G, Petrosillo G, Di Pistolese M, Venosa N, Federici A, Ruggiero FM (2004) Circ Res 94:53–59

    Article  CAS  Google Scholar 

  • Patton C (1999) WinMAXC. Version 2.0. Stanford University Hopkins-Marine Station Pacific Grove CA USA

  • Petrosillo G, Ruggiero FM, Venosa ND, Paradies G (2003) FASEB J 17:714–716

    Article  CAS  Google Scholar 

  • Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Mol Cell Cardiol 17:885–896

    Article  CAS  Google Scholar 

  • Pirola L, Fröjdo S (2008) IUBMB Life 60:323–332

    Article  CAS  Google Scholar 

  • Raval A, Lin H, Dave K, DeFazio A, Della Morte D, Kim E, Pérez-Pinzón M (2008) Curr Med Chem 15:1545–1555

    Article  CAS  Google Scholar 

  • Rifici VA, Stephan EM, Schneider SH, Khachadurian AK (1999) J Am Coll Nutr 18:137–143

    CAS  Google Scholar 

  • Schrauwen P, Walder K, Ravussin E (1999) Obes Res 7:97–105

    CAS  Google Scholar 

  • Terada H (1990) Environ Health Perspect 87:213–218

    Article  CAS  Google Scholar 

  • Wang G, Liem DA, Vondriska TM, Honda HM, Korge P, Pantaleon DM, Qiao X, Wang Y, Weiss JN, Ping P (2005) Am J Physiol 288:H1290–H1295

    Article  CAS  Google Scholar 

  • Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z (2009) Eur J Pharmacol 604:111–116

    Article  CAS  Google Scholar 

  • Zaninovich A (2005) Medicina (B Aires) 65:163–169

    CAS  Google Scholar 

  • Zhang Q, Tang X, Lu QY, Zhang ZF, Brown J, Le AD (2005) Mol Cancer Ther 4:1465–1474

    Article  CAS  Google Scholar 

  • Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP (1999) Drugs Exp Clin Res 25:87–97

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Saavedra-Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Pérez, A., Cortés-Rojo, C., Noriega-Cisneros, R. et al. Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J Bioenerg Biomembr 43, 101–107 (2011). https://doi.org/10.1007/s10863-011-9349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9349-4

Keywords

Navigation