Skip to main content
Log in

MitoKATP activity in healthy and ischemic hearts

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In addition to their role in energy transduction, mitochondria play important non-canonical roles in cell pathophysiology, several of which utilize the mitochondrial ATP-sensitive K+ channel (mitoKATP). In the normal heart, mitoKATP regulates energy transfer through its regulation of intermembrane space volume and is accordingly essential for the inotropic response during periods of high workload. In the ischemic heart, mitoKATP is the point of convergence of protective signaling pathways and mediates inhibition of the mitochondrial permeability transition, and thus necrosis. In this review, we outline the experimental evidence that support these roles for mitoKATP in health and disease, as well as our hypothesis for the mechanism by which complex cardioprotective signals that originate at plasma membrane receptors traverse the cytosol to reach mitochondria and activate mitoKATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Am J Physiol 291:H2067–2074

    CAS  Google Scholar 

  • Argyropoulos G, Harper ME (2002) J Appl Physiol 92(5):2187–2198

    CAS  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Circ Res 97:329–336

    Article  CAS  Google Scholar 

  • Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006a) J Biol Chem 281:20801–2088

    Article  CAS  Google Scholar 

  • Costa AD, Pierre SV, Cohen MV, Downey JMZ, Garlid KD (2008) Cardiovasc Res 77:344–352

    Article  CAS  Google Scholar 

  • Costa ADT, Quinlan C, Andrukhiv A, West IC, Garlid KD (2006b) Am J Physiol 290:H406–415

    CAS  Google Scholar 

  • Crompton M (1999) Biochem J 341(2):233–249

    Article  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Cardiovasc Res 70(2):191–199

    Article  Google Scholar 

  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) J Biol Chem 276(4):2571–2575

    Article  Google Scholar 

  • Downey JM, Davis AM, Cohen MV (2007) Heart Fail Rev 12(3–4):181–188

    Article  CAS  Google Scholar 

  • Droge W (2002) Physiol Rev 82(1):47–95

    CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssiere JL (2002) Biochimie 84(2–3):131–141

    Article  CAS  Google Scholar 

  • Garlid KD, Costa ADT, Quinlan CL, Pierre SV, Dos Santos P (2008) J Mol Cell Cardiol In Press.

  • Garlid KD, Dos Santos P, Xie Z-J, Costa ADT, Paucek P (2003) Biochim Biophys Acta 1606(1–3):1–21

    CAS  Google Scholar 

  • Garlid KD, Paucek P (2003) Biochim Biophys Acta 1606(1–3):23–41

    CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Circ Res 81(6):1072–1082

    CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) J Biol Chem 271(15):8796–8799

    Article  CAS  Google Scholar 

  • Garlid KD, Puddu PE, Pasdois P, Costa ADT, Beauvoit B, Criniti A, Tariosse L, Diolez P, Dos Santos P (2006) Am J Physiol 291:H152–160

    CAS  Google Scholar 

  • Grover GJ, Garlid KD (2000) J Mol Cell Cardiol 32(4):677–695

    Article  CAS  Google Scholar 

  • Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989) J Pharmacol Exp Ther 251(1):98–104

    CAS  Google Scholar 

  • Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Cardiovasc Res 55(3):534–543

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Tsang A, Yellon DM (2005) Trends Cardiovasc Med 15(2):69–75

    Article  CAS  Google Scholar 

  • Jaburek M, Costa ADT, Burton JR, Costa CL, Garlid KD (2006) Circ Res 99:878–883

    Article  CAS  Google Scholar 

  • Jennings RB, Ganote CE (1976) Circ Res. 38(5 Suppl 1): 180–191.

  • Jeong SY, Seol DW (2008) BMB Rep 41:11–22

    CAS  Google Scholar 

  • Kowaltowski AJ (2000) Braz J Med Biol Res 33:241–250

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Am J Physiol 280(2):H649–657

    CAS  Google Scholar 

  • MacGowan GA, Koretsky AP (2000) J Card Fail 6(2):144–156

    CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Circulation 74(5):1124–36

    CAS  Google Scholar 

  • Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adele S, Dos Santos P (2008) Am J Physiol Heart Circ Physiol 294(5):H2088–97

    Article  CAS  Google Scholar 

  • Pasdois PP, Quinlan CL, Rissa A, Tariosse L, Vinassa B, Pierre SV, Dos Santos P, Garlid KD (2007) Am J Physiol 292:H1470–8

    CAS  Google Scholar 

  • Quinlan CL, Costa ADT, Costa CL, Pierre SV, Dos Santos P, Garlid KD (2008) Am J Physiol 295:H953–61

    CAS  Google Scholar 

  • Saks V, Dos Santos P, Gellerich FN, Diolez P (1998) Mol Cell Biochem 184(1–2):291–307

    Article  CAS  Google Scholar 

  • Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD (2003) J Biol Chem 278(48):47997–8003

    Article  CAS  Google Scholar 

  • Turrens JF (2003) J Physiol 552(Pt 2):335–44

    Article  CAS  Google Scholar 

  • Weiss JN, Korge P, Honda HM, Ping P (2003) Circ Res 93(4):292–301

    Article  CAS  Google Scholar 

  • Zhao ZQ, Vinten-Johansen J (2006) Cardiovasc Res 70(2):200–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Garlid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A.D.T., Garlid, K.D. MitoKATP activity in healthy and ischemic hearts. J Bioenerg Biomembr 41, 123–126 (2009). https://doi.org/10.1007/s10863-009-9213-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9213-y

Keywords

Navigation