Skip to main content
Log in

A chemically explicit model for the mechanism of proton pumping in heme–copper oxidases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonini E, Brunori M, Colosimo A, Greenwood C, Wilson MT (1977) Oxygen pulsed cytochrome c oxidase—functional properties and catalytic relevance. Proc Natl Acad Sci USA 74:3128–3132

    Article  CAS  Google Scholar 

  • Aoyama H, Muramoto K, Hirata K, Suga M, Yamashita E, Shinzawa-Itoh K, Ogura T, Tsukihara T, Yoshikawa S (2008) A peroxide bridge between the two metals in the dinuclear center of the fully oxidized cytochrome c oxidase. Biochim Biophys Acta (BBA)—Bioenerg 1777:S69–S69

    Article  Google Scholar 

  • Artzatbanov VY, Konstantinov AA, Skulachev VP (1978) Involvement of intra-mitochondrial protons in redox reactions of cytochrome a. FEBS Lett 87:180–185

    Article  CAS  Google Scholar 

  • Bailey JA, Tomson FL, Mecklenburg SL, MacDonald GM, Katsonouri A, Puustinen A, Gennis RB, Woodruff WH, Dyer RB (2002) Time-resolved step-scan Fourier transform infrared spectroscopy of the CO adducts of bovine cytochrome c oxidase and of cytochrome bo(3) from Escherichia coli. Biochemistry 41:2675–2683

    Article  CAS  Google Scholar 

  • Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10:1–29

    Article  CAS  Google Scholar 

  • Bloch D, Belevich I, Jasaitis A, Ribacka C, Puustinen A, Verkhovsky MI, Wikstrom M (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101:529–533

    Article  CAS  Google Scholar 

  • Blomberg MRA, Siegbahn PEM, Babcock GT, Wikstrom M (2000a) Modeling cytochrome oxidase: a quantum chemical study of the O–O bond cleavage mechanism. J Am Chem Soc 122:12848–12858

    Article  CAS  Google Scholar 

  • Blomberg MRA, Siegbahn PEM, Babcock GT, Wikstrom M (2000b) O–O bond splitting mechanism in cytochrome oxidase. J Inorg Biochem 80:261–269

    Article  CAS  Google Scholar 

  • Brand SE, Rajagukguk S, Ganesan K, Geren L, Fabian M, Han D, Gennis RB, Durham B, Millett F (2007) A new ruthenium complex to study single-electron reduction of the pulsed OH state of detergent-solubilized cytochrome oxidase. Biochemistry 46:14610–14618

    Article  CAS  Google Scholar 

  • Branden G, Pawate AS, Gennis RB, Brzezinski P (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103:317–322

    Article  CAS  Google Scholar 

  • Brunori M, Colosimo A, Rainoni G, Wilson MT, Antonini E (1979) Functional intermediates of cytochrome oxidase—role of pulsed oxidase in the pre-steady state and steady-state reactions of the beef enzyme. J Biol Chem 254:769–775

    Google Scholar 

  • Brunori M, Colosimo A, Sarti P, Antonini E, Wilson MT (1981) Pulsed cytochrome-oxidase may be produced without the advent of dioxygen. FEBS Lett 126:195–198

    Article  CAS  Google Scholar 

  • Brzezinski P, Adelroth P (1998) Pathways of proton transfer in cytochrome c oxidase. J Bioenerg Biomembranes 30:99–107

    Article  CAS  Google Scholar 

  • Bu YX, Cukier RI (2005) Structural character and energetics of tyrosyl radical formation by electron/proton transfers of a covalently linked histidine-tyrosine: a model for cytochrome c oxidase. J Phys Chem B 109:22013–22026

    Article  CAS  Google Scholar 

  • Buse G, Soulimane T, Dewor M, Meyer HE, Bluggel M (1999) Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Protein Sci 8:985–990

    Article  CAS  Google Scholar 

  • Busenlehner LS, Branden G, Namslauer I, Brzezinski P, Armstrong RN (2008) Structural elements involved in proton translocation by cytochrome c oxidase as revealed by backbone amide hydrogen-deuterium exchange of the E286H mutant. Biochemistry 47:73–83

    Article  CAS  Google Scholar 

  • Cappuccio JA, Ayala I, Elliott GI, Szundi I, Lewis J, Konopelski JP, Barry BA, Einarsdottir O (2002) Modeling the active site of cytochrome oxidase: synthesis and characterization of a cross-linked histidine-phenol. J Am Chem Soc 124:1750–1760

    Article  CAS  Google Scholar 

  • Fadda E, Chakrabarti N, Pomes R (2005) Acidity of a Cu-bound histidine in the binuclear center of cytochrome c oxidase. J Phys Chem B 109:22629–22640

    Article  CAS  Google Scholar 

  • Fadda E, Yu CH, Pomes R (2008) Electrostatic control of proton pumping in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1777:277–284

    Article  CAS  Google Scholar 

  • Fann YC, Ahmed I, Blackburn NJ, Boswell JS, Verkhovskaya ML, Hoffman BM, Wikstrom M (1995) Structure of CuB in the binuclear heme–copper center of the cytochrome aa3-type quinol oxidase from Bacillus subtilis—an ENDOR and EXAFS study. Biochemistry 34:10245–10255

    Article  CAS  Google Scholar 

  • Fetter J, Sharpe M, Qian J, Mills D, FergusonMiller S, Nicholls P (1996) Fatty acids stimulate activity and restore respiratory control in a proton channel mutant of cytochrome c oxidase. FEBS Lett 393:155–160

    Article  CAS  Google Scholar 

  • Gennis RB (2004) Coupled proton and electron transfer reactions in cytochrome oxidase. Front Biosci 9:581–591

    Article  CAS  Google Scholar 

  • Heberle J, Nyquist RM, Heitbrink D, Bolwien C, Gennis RB (2004) Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase: controversies on the role of E286. Biochim Biophys Acta Bioenerg 1658:25–25

    Google Scholar 

  • Hosler JP, Shapleigh JP, Mitchell DH, Kim Y, Pressler MA, Georgiou C, Babcock GT, Alben JO, FergusonMiller S, Gennis RB (1996) Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site. Biochemistry 35:10776–10783

    Article  CAS  Google Scholar 

  • Jancura D, Berka V, Antalik M, Bagelova J, Gennis RB, Palmer G, Fabian M (2006) Spectral and kinetic equivalence of oxidized cytochrome c oxidase as isolated and “activated” by reoxidation. J Biol Chem 281:30319–30325

    Article  CAS  Google Scholar 

  • Ji H, Rousseau DL, Yeh SR (2008) Heme–heme communication during the alkaline-induced structural transition in cytochrome c oxidase. J Inorg Biochem 102:414–426

    Article  CAS  Google Scholar 

  • Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis RB (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94:9085–9090

    Article  CAS  Google Scholar 

  • Mills DA, Ferguson-Miller S (2003) Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: lessons from other proteins. FEBS Lett 545:47–51

    Article  CAS  Google Scholar 

  • Mills DA, Hosler JP (2005) Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. Biochemistry 44:4656–4666

    Article  CAS  Google Scholar 

  • Mills DA, Florens L, Hiser C, Qian J, Ferguson-Miller S (2000) Where is ‘outside’ in cytochrome c oxidase and how and when do protons get there? Biochim Biophys Acta Bioenerg 1458:180–187

    Article  CAS  Google Scholar 

  • Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S (1999) Quantitative reevaluation of the redox active sites of crystalline bovine heart cytochrome c oxidase. J Biol Chem 274:33403–33411

    Article  CAS  Google Scholar 

  • Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-O S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 104:7881–7886

    Article  CAS  Google Scholar 

  • Nyquist RM, Heitbrink D, Bolwien C, Gennis RB, Heberle J (2003) Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase. Proc Natl Acad Sci USA 100:8715–8720

    Article  CAS  Google Scholar 

  • Olsson MHM, Warshel A (2006) Monte Carlo simulations of proton pumps: on the working principles of the biological valve that controls proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103:6500–6505

    Article  CAS  Google Scholar 

  • Pisliakov AV, Sharma PK, Chu ZT, Haranczyk M, Warshel A (2008) Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc Natl Acad Sci USA 105:7726–7731

    Article  CAS  Google Scholar 

  • Popovic DM, Stuchebrukhov AA (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: coulomb pump model with kinetic gating. FEBS Lett 566:126–130

    Article  CAS  Google Scholar 

  • Popovic DM, Quenneville J, Stuchebrukhov AA (2005) DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase. J Phys Chem B 109:3616–3626

    Article  CAS  Google Scholar 

  • Powers L, Lauraeus M, Reddy KS, Chance B, Wikstrom M (1994) Structure of the binuclear heme iron-copper site in the quinol-oxidizing cytochrome aa(3), from Bacillus subtilis. Biochim Biophys Acta Bioenerg 1183:504–512

    Article  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA, Babcock GT (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci USA 95:8020–8025

    Article  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA, DeMaso C, Leykam JF, DeWitt DL, Babcock GT (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290:1588–1591

    Article  CAS  Google Scholar 

  • Qin L, Mills DA, Hiser C, Murphree A, Garavito RM, Ferguson-Miller S, Hosler J (2007) Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase. Biochemistry 46:6239–6248

    Article  CAS  Google Scholar 

  • Rauhamaki V, Baumann M, Soliymani R, Puustinen A, Wikstrom M (2006) Identification of a histidine-tyrosine cross-link in the active site of the cbb(3)-type cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 103:16135–16140

    Article  CAS  Google Scholar 

  • Rich PR (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron–copper respiratory oxidases. Aust J Plant Physiol 22:479–486

    Article  CAS  Google Scholar 

  • Seibold SA, Mills DA, Ferguson-Miller S, Cukier RI (2005) Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant. Biochemistry 44:10475–10485

    Article  CAS  Google Scholar 

  • Sharpe MA, Qin L, Ferguson-Miller S (2005) Proton entry, exit and pathways in cytochrome oxidase: insight from ‘conserved’ water. In: Wilkstrom M (ed) Biophysical and Structural Aspects of Bioenergetics. RSC Biomolecular Series, RSC Publishing, Cambridge UK

    Google Scholar 

  • Sharpe MA, McCracken J, Xu S, Krzyaniak M, Ferguson-Miller S (2008) EPR evidence of cyanide and azide binding to the Mn(Mg) center of cytochrome c oxidase: support for CuA-Mg involvement in proton pumping. Biochemistry (in press)

  • Shi WJ, Hoganson CW, Espe M, Bender CJ, Babcock GT, Palmer G, Kulmacz RJ, Tsai AL (2000) Electron paramagnetic resonance and electron nuclear double resonance spectroscopic identification and characterization of the tyrosyl radicals in prostaglandin H synthase 1. Biochemistry 39:4112–4121

    Article  CAS  Google Scholar 

  • Smirnova IA, Adelroth P, Gennis RB, Brzezinski P (1999) Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation. Biochemistry 38:6826–6833

    Article  CAS  Google Scholar 

  • Vakkasoglu AS, Morgan JE, Han D, Pawate AS, Gennis RB (2006) Mutations which decouple the proton pump of the cytochrome c oxidase from Rhodobacter sphaeroides perturb the environment of glutamate 286. FEBS Lett 580:4613–4617

    Article  CAS  Google Scholar 

  • Verkhovskaya ML, GarciaHorsman A, Puustinen A, Rigaud JL, Morgan JE, Verkhovsky MI, Wikstrom M (1997) Glutamic acid 286 in subunit I of cytochrome bo(3) is involved in proton translocation. Proc Natl Acad Sci USA 94:10128–10131

    Article  CAS  Google Scholar 

  • Verkhovsky MI, Jasaitis A, Verkhovskaya ML, Morgan JE, Wikstrom M (1999) Proton translocation by cytochrome c oxidase. Nature 400:480–483

    Article  CAS  Google Scholar 

  • Vygodina TV, Pecoraro C, Mitchell D, Gennis R, Konstantinov AA (1998) Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 37:3053–3061

    Article  CAS  Google Scholar 

  • Wikstrom MKF (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273

    Article  CAS  Google Scholar 

  • Wikstrom M (2004) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta Bioenerg 1655:241–247

    Article  CAS  Google Scholar 

  • Wikstrom M, Krab K (1979) Proton-pumping cytochrome c oxidase. Biochim Biophys Acta 549:177–222

    CAS  Google Scholar 

  • Wikstrom M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme–copper oxidases. Biochim Biophys Acta Bioenerg 1767:1200–1214

    Article  CAS  Google Scholar 

  • Wikstrom M, Bogachev A, Finel M, Morgan JE, Puustinen A, Raitio M, Verkhovskaya M, Verkhovsky MI (1994) Mechanism of proton translocation by the respiratory oxidases—the histidine cycle. Biochim Biophys Acta Bioenerg 1187:106–111

    Article  CAS  Google Scholar 

  • Wrigglesworth JM, Elsden J, Chapman A, Vanderwater N, Grahn MF (1988) Activation by reduction of the resting form of cytochrome c oxidase—tests of different models and evidence for the involvement of cub. Biochim Biophys Acta 936:452–464

    Article  CAS  Google Scholar 

  • Xu JC, Voth GA (2006) Free energy profiles for H+ conduction in the D-pathway of cytochrome c oxidase: a study of the wild type and N98D mutant enzymes. Biochim Biophys Acta Bioenerg 1757:852–859

    Article  CAS  Google Scholar 

  • Xu JC, Sharpe MA, Qin L, Ferguson-Miller S, Voth GA (2007) Storage of an excess proton in the hydrogen-bonded network of the D-pathway of cytochrome c oxidase: identification of a protonated water cluster. J Am Chem Soc 129:2910–2913

    Article  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  CAS  Google Scholar 

  • Zaslavsky D, Gennis RB (1998) Substitution of lysine-362 in a putative proton-conducting channel in the cytochrome c oxidase from Rhodobacter sphaeroides blocks turnover with O2 but not with H2O2. Biochemistry 37:3062–3067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn A. Sharpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharpe, M.A., Ferguson-Miller, S. A chemically explicit model for the mechanism of proton pumping in heme–copper oxidases. J Bioenerg Biomembr 40, 541–549 (2008). https://doi.org/10.1007/s10863-008-9182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9182-6

Keywords

Navigation