Skip to main content
Log in

Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins

  • Transport ATPases: Structure, Mechanism and Relevance to Multiple Diseases
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Copper plays an essential role in human physiology and is indispensable for normal growth and development. Enzymes that are involved in connective tissue formation, neurotransmitter biosynthesis, iron transport, and others essential physiological processes require copper as a cofactor to mediate their reactions. The biosynthetic incorporation of copper into these enzymes takes places within the secretory pathway and is critically dependent on the activity of copper-transporting ATPases ATP7A or ATP7B. In addition, ATP7A and ATP7B regulate intracellular copper concentration by removing excess copper from the cell. These two transporters belong to the family of P1-type ATPases, share significant sequence similarity, utilize the same general mechanism for their function, and show partial colocalization in some cells. However, the distinct biochemical characteristics and dissimilar trafficking properties of ATP7A and ATP7B in cells, in which they are co-expressed, indicate that specific functions of these two copper-transporting ATPases are not identical. Immuno-detection studies in cells and tissues have begun to suggest specific roles for ATP7A and ATP7B. These experiments also revealed technical challenges associated with quantitative detection of copper-transporting ATPases in tissues, as illustrated here by comparing the results of ATP7A and ATP7B immunodetection in mouse cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) J Biol Chem 280(10):9640–9645

    Article  CAS  Google Scholar 

  • Bartee MY, Lutsenko S (2007) Biometals 20(3–4):627–637

    Article  CAS  Google Scholar 

  • Cater MA, La Fontaine S, Shield K, Deal Y, Mercer JF (2006) Gastroenterology 130(2):493–506

    Article  CAS  Google Scholar 

  • Das SK, Ray K (2006) Nat Clin Pract Neurol 2(9):482–493

    Article  CAS  Google Scholar 

  • El Meskini R, Culotta VC, Mains RE, Eipper BA (2003) J Biol Chem 278(14):12278–12284

    Article  Google Scholar 

  • El Meskini R, Cline LB, Eipper BA, Ronnett GV (2005) Dev Neurosci 27(5):333–348

    Article  CAS  Google Scholar 

  • Fanni D, Pilloni L, Orru S, Coni P, Liguori C, Serra S, Lai ML, Uccheddu A, Contu L, Van Eyken P, Faa G (2005) Eur J Histochem 49(4):371–378

    CAS  Google Scholar 

  • Greenough M, Pase L, Voskoboinik I, Petris MJ, O’Brien AW, Camakaris J (2004) Am J Physiol Cell Physiol 287(5):C1463–1471

    Article  CAS  Google Scholar 

  • Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) Am J Physiol Gastrointest Liver Physiol 289(5):G904–916

    Article  CAS  Google Scholar 

  • Hardman B, Michalczyk A, Greenough M, Camakaris J, Mercer JF, Ackland ML (2007) Biochem J 402(2):241–250

    Article  CAS  Google Scholar 

  • Horn N, Jensen OA (1980) Ultrastruct Pathol 1(2):237–242

    CAS  Google Scholar 

  • Jaeger JL, Shimizu N, Gitlin JD (1991) Biochem J 280(Pt 3):671–677

    CAS  Google Scholar 

  • Ke BX, Llanos RM, Wright M, Deal Y, Mercer JF (2006) Am J Physiol Regul Integr Comp Physiol 290(5):R1460–1467

    CAS  Google Scholar 

  • Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD (1996) J Clin Invest 98(1):207–215

    CAS  Google Scholar 

  • Kodama H, Murata Y, Kobayashi M (1999) Pediatr Int 41(4):423–429

    Article  CAS  Google Scholar 

  • Kuo YM, Gitschier J, Packman S (1997) Hum Mol Genet 6(7):1043–1049

    Article  CAS  Google Scholar 

  • Kuivaniemi H, Peltonen L, Palotie A, Kaitila I, Kivirikko KI (1982) J Clin Invest 69(3):730–733

    Article  CAS  Google Scholar 

  • La Fontaine S, Mercer JF (2007) Arch Biochem Biophys 463(2):149–167

    Article  CAS  Google Scholar 

  • Lockhart PJ, La Fontaine S, Firth SD, Greenough M, Camakaris J, Mercer JF (2002) Biochim Biophys Acta 1588(2):189–194

    CAS  Google Scholar 

  • Malhi H, Irani AN, Volenberg I, Schilsky ML, Gupta S (2002) Gastroenterology 122(2):438–447

    Article  Google Scholar 

  • Meng Y, Miyoshi I, Hirabayashi M, Su M, Mototani Y, Okamura T, Terada K, Ueda M, Enomoto K, Sugiyama T, Kasai N (2004) Biochim Biophys Acta 1690(3):208–219

    CAS  Google Scholar 

  • Mishima K, Amemiya T, Takano K (1999) Exp Eye Res 68(1):59–65

    Article  CAS  Google Scholar 

  • Monty JF, Llanos RM, Mercer JF, Kramer DR (2005) J Nutr 135(12):2762–2766

    CAS  Google Scholar 

  • Murata Y, Kodama H, Abe T, Ishida N, Nishimura M, Levinson B, Gitschier J, Packman S (1997) Pediatr Res 42(4):436–442

    Article  CAS  Google Scholar 

  • Niciu MJ, Ma XM, El Meskini R, Ronnett GV, Mains RE, Eipper BA (2006) Neuroscience 139(3):947–964

    Article  CAS  Google Scholar 

  • Niciu MJ, Ma XM, El Meskini R, Pachter JS, Mains RE, Eipper BA (2007) Neurobiol Dis 27(3):278–291

    Article  CAS  Google Scholar 

  • Nyasae L, Bustos R, Braiterman L, Eipper B, Hubbard A (2007) Am J Physiol Gastrointest Liver Physiol 292(4):G1181–1194

    Article  CAS  Google Scholar 

  • Petris MJ, Strausak D, Mercer JF (2000) Hum Mol Genet 9(19):2845–2851

    Article  CAS  Google Scholar 

  • Prohaska JR, Tamura T, Percy AK, Turnlund JR (1997) Pediatr Res 42(6):862–865

    Article  CAS  Google Scholar 

  • Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ (2000) Gastroenterology 119(3):782–793

    Article  CAS  Google Scholar 

  • Royce PM, Steinmann B (1990) Pediatr Res 28(2):137–141

    Article  CAS  Google Scholar 

  • Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999) Am J Physiol 276(3 Pt 1):G639–646

    CAS  Google Scholar 

  • Schilsky ML, Irani AN, Gorla GR, Volenberg I, Gupta S (2000) J Biochem Mol Toxicol 14(4):210–214

    Article  CAS  Google Scholar 

  • Terada K, Nakako T, Yang XL, Iida M, Aiba N, Minamiya Y, Nakai M, Sakaki T, Miura N, Sugiyama T (1998) J Biol Chem 273(3):1815–1820

    Article  CAS  Google Scholar 

  • Voskoboinik I, Strausak D, Greenough M, Brooks H, Petris M, Smith S, Mercer JF, Camakaris J (1999) J Biol Chem 274(31):22008–22012

    Article  CAS  Google Scholar 

  • Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J (2001) Biochem Biophys Res Commun 281(4):966–970

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Lutsenko.

Additional information

This work was supported by the National Institute of Health grants PO1 GM 067166–01 and DK R01 DK071865 to S.L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linz, R., Lutsenko, S. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins. J Bioenerg Biomembr 39, 403–407 (2007). https://doi.org/10.1007/s10863-007-9101-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9101-2

Keywords

Navigation