Skip to main content
Log in

Protein NMR of biologicals: analytical support for development and marketed products

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Application of NMR spectroscopy to derive in-depth characterization of structure and dynamical properties of biomolecules is well established nowadays in many laboratories. Most of these methods rest on the availability of protein labeled with stable isotopes like 13C and 15N. In this report examples are presented on the application of NMR spectroscopic methods to characterize biopharmaceutical proteins in cases no isotope labeled material are available. This is typically found in protein samples used in the development of formulations and production processes. Another important focus of this report is the application of NMR methodology in the field of counterfeit drugs of biologicals and biosimilars. Especially here, NMR does offer relevant structural and quantitative data due to the high versatility of the NMR equipment. An excurse regarding the high medical relevance for a detailed spectroscopic analysis of counterfeits will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akbarzadehlaleh P, Mirzaei M, Mashahdi-Keshtiban M, Shamsasenjan K, Heydari H (2016) PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods. Adv Pharm Bull 6:309–317

    Google Scholar 

  • Arbogast LW, Brinson RG, Marino JP (2015) Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal Chem 87:3556–3561

    Google Scholar 

  • Arbogast LW, Delaglio F, Tolman JR, Marino JP (2018) Selective suppression of excipient signals in 2D (1)H-(13)C methyl spectra of biopharmaceutical products. J Biomol NMR 72:149–161

    Google Scholar 

  • Assi S, Watt RA, Moffat AC (2011) Identification of counterfeit medicines from the Internet and the World market using near-infrared spectroscopy. Anal Methods 3:2231–2236

    Google Scholar 

  • Bate R (2012a) Dangerous drug problems by location. Phake 5:133–176

    Google Scholar 

  • Bate R (2012b) Historical examples of dangerous medicines. Phake 1:11–24

    Google Scholar 

  • Bate R (2012c) Understanding the problem. Phake 2:11–24

    Google Scholar 

  • Bax A, Davis DG (1985) Mlev-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    ADS  Google Scholar 

  • Brinson RG, Marino JP, Delaglio F, Arbogast LW, Evans RM, Kearsley A, Gingras G, Ghasriani H, Aubin Y, Pierens GK, Jia X, Mobli M, Grant HG, Keizer DW, Schweimer K, Stahle J, Widmalm G, Zartler ER, Lawrence CW, Reardon PN, Cort JR, Xu P, Ni F, Yanaka S, Kato K, Parnham SR, Tsao D, Blomgren A, Rundlof T, Trieloff N, Schmieder P, Ross A, Skidmore K, Chen K, Keire D, Freedberg DI, Suter-Stahel T, Wider G, Ilc G, Plavec J, Bradley SA, Baldisseri DM, Sforca ML, Zeri ACM, Wei JY, Szabo CM, Amezcua CA, Jordan JB, Wikstrom M (2019) Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics. MAbs 11:94–105

    Google Scholar 

  • Cavanagh J (2018) Protein NMR spectroscopy: principles and practice. Elsevier, Waltham

    Google Scholar 

  • Cavanagh J, Palmer AG, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear relay spectroscopy. J Magn Reson 91:429–436

    ADS  Google Scholar 

  • Cicero DO, Barbato G, Bazzo R (2001) Sensitivity enhancement of a two-dimensional experiment for the measurement of heteronuclear long-range coupling constants, by a new scheme of coherence selection by gradients. J Magn Reson 148:209–213

    ADS  Google Scholar 

  • Custers D, Krakowska B, De Beer JO, Courselle P, Daszykowski M, Apers S, Deconinck E (2016) Chromatographic impurity fingerprinting of genuine and counterfeit Cialis(R) as a means to compare the discriminating ability of PDA and MS detection. Talanta 146:540–548

    Google Scholar 

  • Deconinck E, Sacre PY, Courselle P, De Beer JO (2012) Chemometrics and chromatographic fingerprints to discriminate and classify counterfeit medicines containing PDE-5 inhibitors. Talanta 100:123–133

    Google Scholar 

  • Dégardin K, Roggo Y (2015) Counterfeit analysis strategy illustrated by a case study. Drug Test Anal 8:388–397

    Google Scholar 

  • Dégardin K, Desponds A, Roggo Y (2017a) Protein-based medicines analysis by Raman spectroscopy for the detection of counterfeits. Forensic Sci Int 278:313–325

    Google Scholar 

  • Dégardin K, Guillemain A, Roggo Y (2017b) Comprehensive study of a handheld raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J Spectrosc. https://doi.org/10.1155/2017/3154035

    Article  Google Scholar 

  • Dégardin K, Guillemain A, Viegas Guerreiro N, Roggo Y (2016) Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets. J Pharm Biomed Anal 128:89–97

    Google Scholar 

  • Degardin K, Roggo Y (2016) Counterfeit analysis strategy illustrated by a case study. Drug Test Anal 8:388–397

    Google Scholar 

  • Degardin K, Roggo Y, Margot P (2015) Forensic intelligence for medicine anti-counterfeiting. Forensic Sci Int 248:15–32

    Google Scholar 

  • Deisingh AK (2005) Pharmaceutical counterfeiting. Analyst 130:271–279

    ADS  Google Scholar 

  • del Castillo Rodriguez C, Lozano Estevan MJ (2015) Counterfeit medicine. a threat to health. Legal situation. Anal Real Acad Nacl Farm 81:329–333

    Google Scholar 

  • Dick LW Jr, Qiu D, Mahon D, Adamo M, Cheng KC (2008) C-terminal lysine variants in fully human monoclonal antibodies: investigation of test methods and possible causes. Biotechnol Bioeng 100:1132–1143

    Google Scholar 

  • Dozier JK, Distefano MD (2015) Site-specific PEGylation of therapeutic proteins. Int J Mol Sci 16:25831–25864

    Google Scholar 

  • Elias RJ, McClements DJ, Decker EA (2005) Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions. J Agric Food Chem 53:10248–10253

    Google Scholar 

  • Flurer CL, Wolnik KA (1994) Chemical profiling of pharmaceuticals by capillary electrophoresis in the determination of drug origin. J Chromatogr A 674:153–163

    Google Scholar 

  • Gaudiano MC, Borioni A, Antoniella E, Valvo L (2016) Counterfeit adderall containing aceclofenac from internet pharmacies. J Forensic Sci 61:1126–1130

    Google Scholar 

  • Gonzalez-Gonzalez M, Mayolo-Deloisa K, Rito-Palomares M (2012) PEGylation, detection and chromatographic purification of site-specific PEGylated CD133-Biotin antibody in route to stem cell separation. J Chromatogr B 893–894:182–186

    Google Scholar 

  • Hada S, Kim NA, Lim DG, Lim JY, Kim KH, Adhikary P, Jeong SH (2016) Evaluation of antioxidants in protein formulation against oxidative stress using various biophysical methods. Int J Biol Macromol 82:192–200

    Google Scholar 

  • Holzgrabe U (2010a) Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc 57:229–240

    Google Scholar 

  • Holzgrabe U (2010b) Analytical challenges in drug counterfeiting and falsification–the NMR approach. J Pharm Biomed Anal 55:1–15

    Google Scholar 

  • Holzgrabe U, Malet-Martino M (2011) Analytical challenges in drug counterfeiting and falsification-The NMR approach. J Pharm Biomed Anal 55:679–687

    Google Scholar 

  • Hoult DI (1976) Solvent peak saturation with single phase and quadrature fourier transformation. J Magn Reson 21:337–347

    ADS  Google Scholar 

  • Kaur H, Seifert K, Hawkes GE, Coumbarides GS, Alvar J, Croft SL (2015) Chemical and bioassay techniques to authenticate quality of the anti-leishmanial drug miltefosine. Am J Trop Med Hyg 92:31–38

    Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (2011) Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990. J Magn Reson 213:423–441

    ADS  Google Scholar 

  • Kishore RS, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A, Mahler HC (2011) Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci 100:721–731

    Google Scholar 

  • Klaus W, Gsell B, Labhardt AM, Wipf B, Senn H (1997) The three-dimensional high resolution structure of human interferon alpha-2a determined by heteronuclear NMR spectroscopy in solution. J Mol Biol 274:661–675

    Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 44:2089–2092

    Google Scholar 

  • Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132:125–129

    ADS  Google Scholar 

  • Malmstrom J (2019) Quantification of silicone oil and its degradation products in aqueous pharmaceutical formulations by (1)H-NMR spectroscopy. J Pharm Sci 108:1512–1520

    Google Scholar 

  • Marini RD, Rozet E, Montes ML, Rohrbasser C, Roht S, Rheme D, Bonnabry P, Schappler J, Veuthey JL, Hubert P, Rudaz S (2010) Reliable low-cost capillary electrophoresis device for drug quality control and counterfeit medicines. J Pharm Biomed Anal 53:1278–1287

    Google Scholar 

  • McEwen I, Elmsjo A, Lehnstrom A, Hakkarainen B, Johansson M (2012) Screening of counterfeit corticosteroid in creams and ointments by NMR spectroscopy. J Pharm Biomed Anal 70:245–250

    Google Scholar 

  • Medina E, Bel E, Sune JM (2016) Counterfeit medicines in Peru: a retrospective review (1997–2014). BMJ Open 6:e010387

    Google Scholar 

  • Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119

    Google Scholar 

  • Moorkens E, Meuwissen N, Huys I, Declerck P, Vulto AG, Simoens S (2017) The market of biopharmaceutical medicines: a snapshot of a diverse industrial landscape. Front Pharmacol 8:314

    Google Scholar 

  • Mueller R, Karle A, Vogt A, Kropshofer H, Ross A, Maeder K, Mahler HC (2009) Evaluation of the immuno-stimulatory potential of stopper extractables and leachables by using dendritic cells as readout. J Pharm Sci 98:3548–3561

    Google Scholar 

  • Neuberger S, Neususs C (2015) Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets. J Pharm Biomed Anal 112:70–78

    Google Scholar 

  • Nyadong L, Harris GA, Balayssac S, Galhena AS, Malet-Martino M, Martino R, Parry RM, Wang MD, Fernandez FM, Gilard V (2009) Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals. Anal Chem 81:4803–4812

    Google Scholar 

  • Ortiz RS, Mariotti Kde C, Fank B, Limberger RP, Anzanello MJ, Mayorga P (2013) Counterfeit Cialis and Viagra fingerprinting by ATR-FTIR spectroscopy with chemometry: can the same pharmaceutical powder mixture be used to falsify two medicines? Forensic Sci Int 226:282–289

    Google Scholar 

  • Pharmaceutical Security Institute (PSI) (2018) Counterfeit Situation. PSI report, https://www.psi-inc.org/. Accessed 19 Dec 2018

  • Poppe L, Jordan JB, Rogers G, Schnier PD (2015) On the Analytical superiority of 1D NMR for fingerprinting the higher order structure of protein therapeutics compared to multidimensional NMR methods. Anal Chem 87:5539–5545

    Google Scholar 

  • Remaud GS, Bussy U, Lees M, Thomas F, Desmurs JR, Jamin E, Silvestre V, Akoka S (2013) NMR spectrometry isotopic fingerprinting: a tool for the manufacturer for tracking active pharmaceutical ingredients from starting materials to final medicines. Eur J Pharm Sci 48:464–473

    Google Scholar 

  • Reynolds L, McKee M (2010) Organised crime and the efforts to combat it: a concern for public health. Glob Health 6:2

    Google Scholar 

  • Ribaux O, Girod A, Walsh SJ, Margot P, Mizrahi S, Clivaz V (2003) Forensic intelligence and crime analysis. Law Probab Risk 2:47–60

    Google Scholar 

  • Riccardi M, Dugato M, Polizzotti M (2014) The theft of medicines from Italian hospitals. Transcrime, ISBN: 978-88-8443-528-6

  • Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Google Scholar 

  • SafeMedicines (2018) Counterfeit drug incident encyclopedia. Partnership for safe medicines, https://www.safemedicines.org/counterfeit-drug-incident-encyclopedia.html. Accessed 24 Aug 2018

  • Schappler J, Reginato E, Assane Diop EH, Rudaz S (2014) Analyse Qualitative et Quantitative de Contrefaçons par Electrophorese Capillaire, une Approche Intégrée par la Technique de la Double Injection. Spectra Anal 298:63–73

    Google Scholar 

  • Shaw AA, Salaun C, Dauphin JF, Ancian B (1996) Artifact-free PFG-enhanced double-quantum-filtered COSY experiments. J Magn Reson, Ser A 120:110–115

    ADS  Google Scholar 

  • Singh J, Desai S, Yadav S, Narasimhan B, Kaur H (2016) Polymer drug conjugates: recent advancements in various diseases. Curr Pharm Des 22:2821–2843

    Google Scholar 

  • Torosantucci R, Schoneich C, Jiskoot W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31:541–553

    Google Scholar 

  • Trefi S, Routaboul C, Hamieh S, Gilard V, Malet-Martino M, Martino R (2008) Analysis of illegally manufactured formulations of tadalafil (Cialis) by 1H NMR, 2D DOSY 1H NMR and Raman spectroscopy. J Pharm Biomed Anal 47:103–113

    Google Scholar 

  • Union des Fabricants, U.F (2016) Counterfeiting and terrorism. Unifab report, https://www.unifab.com/wp-content/uploads/2016/06/Rapport-A-Terrorisme-2015_GB_22.pdf. Accessed 27 Jan 2020

  • UNODC (2010) The globalization of crime: a transnational organized crime threat assessment. United Nations Office on Drugs and Crime, Vienna

    Google Scholar 

  • Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54:453–456

    Google Scholar 

  • Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22:315–329

    Google Scholar 

  • Wang ZY, Shimonaga M, Muraoka Y, Kobayashi M, Nozawa T (2001) Methionine oxidation and its effect on the stability of a reconstituted subunit of the light-harvesting complex from Rhodospirillum rubrum. Eur J Biochem 268:3375–3382

    Google Scholar 

  • Webster GK, Marsden I, Pommerening CA, Tyrakowski CM (2010) Validation of pharmaceutical potency determinations by quantitative nuclear magnetic resonance spectrometry. Appl Spectrosc 64:537–542

    ADS  Google Scholar 

  • WHO (2010) Growing threat from counterfeit medicines. Bull World Health Organ 88:241–320

    Google Scholar 

  • Wilczynki S, Petelenz M, Florek-Wojciechowska M, Kulesza S, Brym S, Blonska-Fajfrowska B, Kruk D (2017) Verification of the authenticity of drugs by means of NMR relaxometry-Viagra((R)) as an example. J Pharm Biomed Anal 135:199–205

    Google Scholar 

  • Willker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn Reson Chem 31:287–292

    Google Scholar 

  • Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806

    Google Scholar 

  • Wu DH, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264

    ADS  Google Scholar 

  • Zink T, Ross A, Luers K, Cieslar C, Rudolph R, Holak TA (1994) Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein. Biochemistry 33:8453–8463

    Google Scholar 

  • Zontov YV, Balyklova KS, Titova AV, Rodionova OY, Pomerantsev AL (2016) Chemometric aided NIR portable instrument for rapid assessment of medicine quality. J Pharm Biomed Anal 131:87–93

    Google Scholar 

Download references

Acknowledgements

We acknowledge A. Genini, P. Goldbach, B. Gsell, A. Pappenberger (all Roche Basel) and A. Adler (Roche Penzberg) for support of the preparation of samples investigated and M. Binder (Roche Basel) for support with data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Casagrande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, F., Dégardin, K. & Ross, A. Protein NMR of biologicals: analytical support for development and marketed products. J Biomol NMR 74, 657–671 (2020). https://doi.org/10.1007/s10858-020-00318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-020-00318-w

Keywords

Navigation