Skip to main content

Advertisement

Log in

High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abagyan RA, Totrov MM (1997) Contact area difference (CAD): a robust measure to evaluate accuracy of protein models. J Mol Biol 268:678–685. doi:10.1006/jmbi.1997.0994

    Article  Google Scholar 

  • Baker NA (2005) Improving implicit solvent simulations: a Poisson-centric view. Curr Opin Struct Biol 15:137–143. doi:10.1016/j.sbi.2005.02.001

    Article  Google Scholar 

  • Bashford D, Case DA (2000) Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 51:129–152. doi:10.1146/annurev.physchem.51.1.129

    Article  ADS  Google Scholar 

  • Bermejo GA, Clore GM, Schwieters CD (2012) Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci 21:1824–1836. doi:10.1002/pro.2163

    Article  Google Scholar 

  • Bermejo GA, Clore GM, Schwieters CD (2016) Improving NMR Structures of RNA. Structure 24:806–815. doi:10.1016/j.str.2016.03.007

    Article  Google Scholar 

  • Bertini I, Case DA, Ferella L, Giachetti A, Rosato A (2011) A Grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics 27:2384–2390. doi:10.1093/bioinformatics/btr415

    Article  Google Scholar 

  • Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi:10.1002/jcc.21287

    Article  Google Scholar 

  • Brunger AT (1992) X-PLOR, Version 3.1: a system for X-ray crystallography and NMR. Yale University Press, New Haven

    Google Scholar 

  • Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921

    Article  Google Scholar 

  • Cai M et al (1998) Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Nat Struct Biol 5:903–909. doi:10.1038/2345

    Article  Google Scholar 

  • Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  Google Scholar 

  • Chen J, Brooks CL 3rd, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148. doi:10.1016/j.sbi.2008.01.003

    Article  Google Scholar 

  • Chen J, Im W, Brooks CL 3rd (2004) Refinement of NMR structures using implicit solvent and advanced sampling techniques. J Am Chem Soc 126:16038–16047. doi:10.1021/ja047624f

    Article  Google Scholar 

  • Chen J, Won HS, Im W, Dyson HJ, Brooks CL 3rd (2005) Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. J Biomol NMR 31:59–64. doi:10.1007/s10858-004-6056-z

    Article  Google Scholar 

  • Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073

    Article  Google Scholar 

  • Cheng X, Im W (2012) NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. Biophys J 102:L27–L29. doi:10.1016/j.bpj.2012.03.002

    Article  Google Scholar 

  • Cheng X, Jo S, Marassi FM, Im W (2013) NMR-based simulation studies of Pf1 coat protein in explicit membranes. Biophys J 105:691–698. doi:10.1016/j.bpj.2013.06.040

    Article  Google Scholar 

  • Clore GM (2015) Practical aspects of paramagnetic relaxation enhancement in biological macromolecules. Methods Enzymol 564:485–497. doi:10.1016/bs.mie.2015.06.032

    Article  Google Scholar 

  • Clore GM, Garrett DS (1999) R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121:9008–9012

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit Rev Biochem Mol Biol 24:479–564

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1998) New methods of structure refinement for macromolecular structure determination by NMR. Proc Natl Acad Sci USA 95:5891–5898

    Article  ADS  Google Scholar 

  • Cornilescu G et al (2016) Structural analysis of multi-helical RNAs by NMR-SAXS/WAXS: application to the U4/U6 di-snRNA. J Mol Biol 428:777–789. doi:10.1016/j.jmb.2015.11.026

    Article  Google Scholar 

  • Cross TA, Ekanayake V, Paulino J, Wright A (2014) Solid state NMR: the essential technology for helical membrane protein structural characterization. J Magn Reson 239:100–109. doi:10.1016/j.jmr.2013.12.006

    Article  ADS  Google Scholar 

  • Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382. doi:10.1146/annurev.biochem.77.062906.171838

    Article  Google Scholar 

  • Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, Cross TA (2015) Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci USA 112:E119–E126. doi:10.1073/pnas.1415908112

    Article  ADS  Google Scholar 

  • Davis IW et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383. doi:10.1093/nar/gkm216

    Article  ADS  Google Scholar 

  • DeLano WL (2005) PyMol.

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452. doi:10.1146/annurev-biophys-042910-155245

    Article  Google Scholar 

  • Feeney J, Birdsall B, Kovalevskaya NV, Smurnyy YD, Navarro Peran EM, Polshakov VI (2011) NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. Biochemistry 50:3609–3620. doi:10.1021/bi200067t

    Article  Google Scholar 

  • Feig M, Brooks CL 3rd (2004) Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr Opin Struct Biol 14:217–224. doi:10.1016/j.sbi.2004.03.009

    Article  Google Scholar 

  • Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM (1997) Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system by multidimensional NMR. BioChemistry 36:2517–2530. doi:10.1021/bi962924y

    Article  Google Scholar 

  • Garrett DS, Seok YJ, Peterkofsky A, Gronenborn AM, Clore GM (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol 6:166–173. doi:10.1038/5854

    Article  Google Scholar 

  • Gronenborn AM, Clore GM (1995) Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Crit Rev Biochem Mol Biol 30:351–385. doi:10.3109/10409239509083489

    Article  Google Scholar 

  • Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661

    Article  ADS  Google Scholar 

  • Guntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31:145–237

    Article  Google Scholar 

  • Guntert P (2004) Automated NMR structure calculation with CYANA Methods Mol Biol 278:353–378. doi:10.1385/1-59259-809-9:353

    Google Scholar 

  • Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298. doi:10.1006/jmbi.1997.1284

    Article  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925. doi:10.1021/ja310901f

    Article  Google Scholar 

  • Im W, Brooks CL 3rd (2004) De novo folding of membrane proteins: an exploration of the structure and NMR properties of the fd coat protein. J Mol Biol 337:513–519. doi:10.1016/j.jmb.2004.01.045

    Article  Google Scholar 

  • Jureka AS, Kleinpeter AB, Cornilescu G, Cornilescu CC, Petit CM (2015) Structural basis for a novel interaction between the NS1 protein derived from the 1918 influenza virus and RIG-I. Structure 23:2001–2010. doi:10.1016/j.str.2015.08.007

    Article  Google Scholar 

  • Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 97:10383–10388

    Article  ADS  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–2338

    Article  Google Scholar 

  • Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192. doi:10.1002/prot.10410

    Article  Google Scholar 

  • Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152. doi:10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N

    Article  Google Scholar 

  • Lee W, Petit CM, Cornilescu G, Stark JL, Markley JL (2016) The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data. J Biomol NMR 65:51–57. doi:10.1007/s10858-016-0036-y

    Article  Google Scholar 

  • Linge JP, Nilges M (1999) Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. J Biomol NMR 13:51–59

    Article  Google Scholar 

  • Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506. doi:10.1002/prot.10299

    Article  Google Scholar 

  • Lovell SC et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  Google Scholar 

  • Mahalakshmi R, Marassi FM (2008) Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-state NMR. BioChemistry 47:6531–6538. doi:10.1021/bi800362b

    Article  Google Scholar 

  • Mao B, Tejero R, Baker D, Montelione GT (2014) Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures. J Am Chem Soc 136:1893–1906. doi:10.1021/ja409845w

    Article  Google Scholar 

  • Marassi FM, Opella SJ (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 12:403–411. doi:10.1110/ps.0211503

    Article  Google Scholar 

  • Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y (2015) Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. J Biomol NMR 63:59–65. doi:10.1007/s10858-015-9963-2

    Article  Google Scholar 

  • Murray DT, Li C, Gao FP, Qin H, Cross TA (2014) Membrane protein structural validation by oriented sample solid-state NMR: diacylglycerol kinase. Biophys J 106:1559–1569. doi:10.1016/j.bpj.2014.02.026

    Article  Google Scholar 

  • Nabuurs SB et al (2004) DRESS: a database of REfined solution NMR structures. Proteins 55:483–486. doi:10.1002/prot.20118

    Article  Google Scholar 

  • Nabuurs SB, Krieger E, Spronk CA, Nederveen AJ, Vriend G, Vuister GW (2005) Definition of a new information-based per-residue quality parameter. J Biomol NMR 33:123–134. doi:10.1007/s10858-005-2826-5

    Article  Google Scholar 

  • Nederveen AJ et al (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59:662–672. doi:10.1002/prot.20408

    Article  Google Scholar 

  • Nilges M, Gronenborn AM, Brunger AT, Clore GM (1988) Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng 2:27–38

    Article  Google Scholar 

  • Raman S et al (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018. doi:10.1126/science.1183649

    Article  ADS  Google Scholar 

  • Ramelot TA et al (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins 75:147–167. doi:10.1002/prot.22229

    Article  Google Scholar 

  • Roux B, Simonson T (1999) Implicit solvent models. Biophys Chem 78:1–20

    Article  Google Scholar 

  • Sammalkorpi M, Lazaridis T (2007) Modeling a spin-labeled fusion peptide in a membrane: implications for the interpretation of EPR experiments. Biophys J 92:10–22. doi:10.1529/biophysj.106.092809

    Article  Google Scholar 

  • Schwieters CD, Clore GM (2001) Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J Magn Reson 152:288–302

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Marius Clore G (2006) Using Xplor–NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62. doi:10.1016/j.pnmrs.2005.10.001

    Article  Google Scholar 

  • Sengupta I, Nadaud PS, Jaroniec CP (2013) Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc Chem Res 46:2117–2126. doi:10.1021/ar300360q

    Article  Google Scholar 

  • Sharma M et al (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512. doi:10.1126/science.1191750

    Article  ADS  Google Scholar 

  • Shi L, Traaseth NJ, Verardi R, Cembran A, Gao J, Veglia G (2009) A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. J Biomol NMR 44:195–205. doi:10.1007/s10858-009-9328-9

    Article  Google Scholar 

  • Spronk CA, Linge JP, Hilbers CW, Vuister GW (2002) Improving the quality of protein structures derived by NMR spectroscopy. J Biomol NMR 22:281–289

    Article  Google Scholar 

  • Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. BioChemistry 46:6774–6783. doi:10.1021/bi700391b

    Article  Google Scholar 

  • Teriete P, Yao Y, Kolodzik A, Yu J, Song H, Niederweis M, Marassi FM (2010) Mycobacterium tuberculosis Rv0899 adopts a mixed alpha/beta-structure and does not form a transmembrane beta-barrel. Biochemistry 49:2768–2777. doi:10.1021/bi100158s

    Article  Google Scholar 

  • Tian Y, Schwieters CD, Opella SJ, Marassi FM (2014) A practical implicit solvent potential for NMR structure calculation. J Magn Reson 243:54–64. doi:10.1016/j.jmr.2014.03.011

    Article  ADS  Google Scholar 

  • Tian Y, Schwieters CD, Opella SJ, Marassi FM (2015) A practical implicit membrane potential for NMR structure calculations of membrane proteins. Biophys J 109:574–585. doi:10.1016/j.bpj.2015.06.047

    Article  Google Scholar 

  • Vanommeslaeghe K, MacKerell AD Jr (2015) CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim Biophys Acta 1850:861–871. doi:10.1016/j.bbagen.2014.08.004

    Article  Google Scholar 

  • Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–1393. doi:10.1126/science.1103943

    Article  ADS  Google Scholar 

  • Wang Y, Schwieters CD, Tjandra N (2012) Parameterization of solvent-protein interaction and its use on NMR protein structure determination. J Magn Reson 221:76–84. doi:10.1016/j.jmr.2012.05.020

    Article  ADS  Google Scholar 

  • Wang S et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012. doi:10.1038/nmeth.2635

    Article  Google Scholar 

  • Ward ME, Brown LS, Ladizhansky V (2015) Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin. J Magn Reson 253:119–128. doi:10.1016/j.jmr.2014.11.017

    Article  ADS  Google Scholar 

  • Word JM et al (1999) Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 285:1711–1733. doi:10.1006/jmbi.1998.2400

    Article  Google Scholar 

  • Xia B, Tsui V, Case DA, Dyson HJ, Wright PE (2002) Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. J Biomol NMR 22:317–331

    Article  Google Scholar 

  • Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713. doi:10.1016/j.cell.2008.09.044

    Article  Google Scholar 

Download references

Acknowledgements

We thank Vladimir Ladizhansky for helpful discussion. This research was supported by a grant from the National Institutes of Health (GM118186) and by the Resource for Molecular Imaging of Proteins at UCSD supported by the National Institutes of Health (P41 EB002031) and by the Intramural Research Program of the Center for Information Technology at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Marassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Schwieters, C.D., Opella, S.J. et al. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH. J Biomol NMR 67, 35–49 (2017). https://doi.org/10.1007/s10858-016-0082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0082-5

Keywords

Navigation