Skip to main content
Log in

Efficient band-selective homonuclear CO–CA cross-polarization in protonated proteins

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Previously introduced for highly deuterated proteins, band-selective magnetization transfer between CO and CA spins by dipolar-based homonuclear cross polarization is applied here to a protonated protein. Robust and efficient recoupling is achieved when the sum of effective radio-frequency fields on CO and CA resonances equals two times the spinning rate, yielding up to 33 % of magnetization transfer efficiency in protonated ubiquitin. The approach is designed for moderate magic-angle spinning rates and high external magnetic fields when the isotropic chemical shift difference of CO and CA considerably exceeds the spinning rate. This method has been implemented in NiCOi−1CAi−1 and CAi(Ni)COi−1CAi−1 two-dimensional interresidual correlation experiments for fast and efficient resonance assignment of ubiquitin by solid-state NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Asami S, Rakwalska-Bange M, Carlomagno T, Reif B (2013) Protein-RNA interfaces probed by 1H-detected MAS solid-state NMR spectroscopy. Angew Chem Int Ed 52(8):2345–2349

    Article  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207

    Article  ADS  Google Scholar 

  • Bayro MJ, Ramachandran R, Caporini MA, Eddy MT, Griffin RG (2008) Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. J Chem Phys 128(5):052321

    Article  ADS  Google Scholar 

  • Bayro MJ, Huber M, Ramachandran R, Davenport TC, Meier BH, Ernst M, Griffin RG (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130(11):114506

    Article  ADS  Google Scholar 

  • Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133(35):13967–13974

    Article  Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen WG, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108(22):9463–9479

    Article  ADS  Google Scholar 

  • Boeckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327

    Article  Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009) Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45(1–2):197–206

    Article  Google Scholar 

  • Chevelkov V, Giller K, Becker S, Lange A (2013) Efficient CO–CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization. J Magn Reson 230:205–211

    Article  ADS  Google Scholar 

  • De Paepe G (2012) Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. In: Johnson MA, Martinez TJ (eds) Annual review of physical chemistry, vol 63. Annual Reviews, Palo Alto, pp 661–684

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101

    Article  ADS  Google Scholar 

  • Hodgkinson P, Emsley L (1999) The accuracy of distance measurements in solid-state NMR. J Magn Reson 139(1):46–59

    Article  ADS  Google Scholar 

  • Hong M, Schmidt-Rohr K (2013) Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res doi: 10.1021/ar300294x

  • Huang KY, Siemer AB, McDermott AE (2011) Homonuclear mixing sequences for perdeuterated proteins. J Magn Reson 208(1):122–127

    Article  ADS  Google Scholar 

  • Huber M, Hiller S, Schanda P, Ernst M, Bockmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12(5):915–918

    Article  Google Scholar 

  • Igumenova TI, Wand AJ, McDermott AE (2004) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126(16):5323–5331

    Article  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alpha B-crystallin oligomers. Nat Struct Mol Biol 17(9):1037–1042

    Article  Google Scholar 

  • Lazar GA, Desjarlais JR, Handel TM (1997) De novo design of the hydrophobic core of ubiquitin. Protein Sci 6(6):1167–1178

    Article  Google Scholar 

  • Lewandowski JR (2013) Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Acc Chem Res doi: 10.1021/ar300334g

  • Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486(7402):276–279

    ADS  Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  MathSciNet  Google Scholar 

  • Mithu VS, Bakthavatsalam S, Madhu PK (2013) 13C-13C homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency. PLoS ONE 8(1):e50504

    Article  ADS  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126(23):7196–7197

    Article  Google Scholar 

  • Nielsen NC, Bildsoe H, Jakobsen HJ, Levitt MH (1994) Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J Chem Phys 101:1805–1812

    Article  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. ChemBioChem 2(4):272–281

    Article  Google Scholar 

  • Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid-state NMR. Chem Phys Lett 146(1–2):71–76

    Article  ADS  Google Scholar 

  • Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132(45):15957–15967

    Article  Google Scholar 

  • Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460(1–3):278–283

    Article  ADS  Google Scholar 

  • Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Bockmann A, Meier BH (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227). ChemBioChem 11(11):1543–1551

    Article  Google Scholar 

  • Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from (13C, 13C) correlation spectroscopy. Phys Chem Chem Phys 6(22):5090–5093

    Article  Google Scholar 

  • Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005) High-resolution solid-state NMR studies on uniformly [13C, 15N]-labeled ubiquitin. ChemBioChem 6(9):1638–1647

    Article  Google Scholar 

  • Sengupta I, Nadaud PS, Helmus JJ, Schwieters CD, Jaroniec CP (2012) Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nat Chem 4(5):410–417

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—WALTZ-16. J Magn Reson 52(2):335–338

    Google Scholar 

  • Shi LC, Ahmed MAM, Zhang WR, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386(4):1078–1093

    Article  Google Scholar 

  • Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form. J Biomol NMR 34(2):75–87

    Article  Google Scholar 

  • Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier-transform 13C cross polarization-magic-angle spinning. J Magn Reson 47(3):462–475

    Google Scholar 

  • Takegoshi K, Nomura K, Terao T (1995) Rotational resonance in the tilted rotating–frame. Chem Phys Lett 232(5–6):424–428

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637

    Article  ADS  Google Scholar 

  • Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150(1):81–99

    Article  ADS  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526

    Article  ADS  Google Scholar 

  • Weingarth M, Baldus M (2013) Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation. Acc Chem Res doi: 10.1021/ar300316e

Download references

Acknowledgments

We thank Karin Giller and Brigitta Angerstein for expert technical assistance. This work was supported by the Max Planck Society, the DFG (Emmy Noether Fellowship to A. L.), and the European Union Seventh Framework Program under Grant Agreement 261863 (Bio-NMR). C.S. acknowledges funding from the MPG-CAS Joint Doctoral Promotion Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Lange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevelkov, V., Shi, C., Fasshuber, H.K. et al. Efficient band-selective homonuclear CO–CA cross-polarization in protonated proteins. J Biomol NMR 56, 303–311 (2013). https://doi.org/10.1007/s10858-013-9767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9767-1

Keywords

Navigation