Skip to main content
Log in

Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GB1:

B1 domain of streptococcal protein G

hnRNP:

Heterogeneous nuclear ribonucleoprotein

HSQC:

Heteronuclear single quantum coherence

MESNA:

Sodium 2-mercaptoethanesulfonate

Mxe GyrA:

GyrA gene from Mycobacterium xenopi

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser effect spectroscopy

PABP:

Polyadenylate binding protein

r.m.s.d.:

Root-mean-square deviation

RRM:

RNA recognition motif

UP1:

Unwinding protein 1

References

  • Allain FH, Bouvet P, Dieckmann T, Feigon J (2000a) Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 19(24):6870–6881

    Article  Google Scholar 

  • Allain FH, Gilbert DE, Bouvet P, Feigon J (2000b) Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. J Mol Biol 303(2):227–241

    Article  Google Scholar 

  • Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ (2005) Motion of carboxyl terminus of Galpha is restricted upon G protein activation. A solution NMR study using semisynthetic Galpha subunits. J Biol Chem 280(35):31019–31026

    Article  Google Scholar 

  • Arumugam S, Miller MC, Maliekal J, Bates PJ, Trent JO, Lane AN (2010) Solution structure of the RBD1,2 domains from human nucleolin. J Biomol NMR 47(1):79–83

    Article  Google Scholar 

  • Bae E, Reiter NJ, Bingman CA, Kwan SS, Lee D, Phillips GN Jr, Butcher SE, Brow DA (2007) Structure and interactions of the first three RNA recognition motifs of splicing factor prp24. J Mol Biol 367(5):1447–1458

    Article  Google Scholar 

  • Barraud P, Emmerth S, Shimada Y, Hotz HR, Allain FH, Buhler M (2011) An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO J 30(20):4223–4235

    Article  Google Scholar 

  • Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339:127–174

    Article  Google Scholar 

  • Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733

    Article  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921

    Article  Google Scholar 

  • Cáceres JF, Stamm S, Helfman DM, Krainer AR (1994) Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265(5179):1706–1709

    Article  ADS  Google Scholar 

  • Camarero JA, Shekhtman A, Campbell EA, Chlenov M, Gruber TM, Bryant DA, Darst SA, Cowburn D, Muir TW (2002) Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci U S A 99(13):8536–8541

    Article  ADS  Google Scholar 

  • Casas-Finet JR, Karpel RL, Maki AH, Kumar A, Wilson SH (1991) Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. support for a segmented structure. J Mol Biol 221(2):693–709

    Article  Google Scholar 

  • Chen J, Wang J (2011) A segmental labeling strategy for unambiguous determination of domain–domain interactions of large multi-domain proteins. J Biomol NMR 50(4):403–410

    Article  MATH  Google Scholar 

  • Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci U S A 108(36):14813–14818

    Article  ADS  Google Scholar 

  • Cordier F, Dingley AJ, Grzesiek S (1999) A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J Biomol NMR 13(2):175–180

    Article  Google Scholar 

  • Crichlow GV, Zhou H, Hsiao HH, Frederick KB, Debrosse M, Yang Y, Folta-Stogniew EJ, Chung HJ, Fan C, De la Cruz EM, Levens D, Lolis E, Braddock D (2008) Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO J 27(1):277–289

    Article  Google Scholar 

  • Crowder SM, Kanaar R, Rio DC, Alber T (1999) Absence of inter domain contacts in the crystal structure of the RNA recognition motifs of sex-lethal. Proc Natl Acad Sci U S A 96(9):4892–4897

    Article  ADS  Google Scholar 

  • Cukier CD, Hollingworth D, Martin SR, Kelly G, Diaz-Moreno I, Ramos A (2010) Molecular basis of FIR-mediated c-myc transcriptional control. Nat Struct Mol Biol 17(9):1058–1064

    Article  Google Scholar 

  • David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271(4):663–677

    Article  Google Scholar 

  • Dayie KT, Wagner G, Lefèvre JF (1996) Theory and practice of nuclear spin relaxation in proteins. Annu Rev Phys Chem 47:243–282

    Article  ADS  Google Scholar 

  • Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98(6):835–845

    Article  Google Scholar 

  • Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM (1999) Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev 13(9):1102–1115

    Article  Google Scholar 

  • Dominguez C, Allain FH-T (2006) NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Res 34(13):3634–3645

    Article  Google Scholar 

  • Doreleijers JF, Sousa da Silva AW, Krieger E, Nabuurs SB, Spronk CAEM, Stevens TJ, Vranken WF, Vriend G, Vuister GW (2012) CING: an integrated residue-based structure validation program suite. J Biomol NMR 54(3):267–283

    Article  Google Scholar 

  • Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20(3):223–231

    Article  Google Scholar 

  • Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  Google Scholar 

  • Flynn RL, Centore RC, O’Sullivan RJ, Rai R, Tse A, Songyang Z, Chang S, Karlseder J, Zou L (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471(7339):532–536

    Article  ADS  Google Scholar 

  • Fushman D, Weisemann R, Thüring H, Rüterjans H (1994) Backbone dynamics of ribonuclease T1 and its complex with 2′GMP studied by two-dimensional heteronuclear NMR spectroscopy. J Biomol NMR 4(1):61–78

    Article  Google Scholar 

  • Garrett DS, Lodi PJ, Shamoo Y, Williams KR, Clore GM, Gronenborn AM (1994) Determination of the secondary structure and folding topology of an RNA binding domain of mammalian hnRNP A1 protein using three-dimensional heteronuclear magnetic resonance spectroscopy. Biochemistry 33(10):2852–2858

    Article  Google Scholar 

  • Goddard T, Kneller D (2006) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Guil S, Cáceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596

    Article  Google Scholar 

  • Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    Google Scholar 

  • Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298

    Article  Google Scholar 

  • Handa N, Nureki O, Kurimoto K, Kim I, Sakamoto H, Shimura Y, Muto Y, Yokoyama S (1999) Structural basis for recognition of the tra mRNA precursor by the sex-lethal protein. Nature 398(6728):579–585

    Article  ADS  Google Scholar 

  • Herrmann T, Guntert P, Wuthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319(1):209–227

    Article  Google Scholar 

  • Herrmann T, Guntert P, Wuthrich K (2002b) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24(3):171–189

    Article  Google Scholar 

  • Johansson C, Finger LD, Trantirek L, Mueller TD, Kim S, Laird-Offringa IA, Feigon J (2004) Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J Mol Biol 337(4):799–816

    Article  Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15 N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28(23):8972–8979

    Article  Google Scholar 

  • LaBranche H, Dupuis S, Ben-David Y, Bani MR, Wellinger RJ, Chabot B (1998) Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 19(2):199–202

    Article  Google Scholar 

  • Lamichhane R, Daubner GM, Thomas-Crusells J, Auweter SD, Manatschal C, Austin KS, Valniuk O, Allain FH-T, Rueda D (2010) RNA looping by PTB: evidence using FRET and NMR spectroscopy for a role in splicing repression. Proc Natl Acad Sci U S A 107(9):4105–4110

    Article  ADS  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  Google Scholar 

  • Leeper TC, Qu X, Lu C, Moore C, Varani G (2010) Novel protein–protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J Mol Biol 401(3):334–349

    Article  Google Scholar 

  • Mackereth CD, Sattler M (2012) Dynamics in multi-domain protein recognition of RNA. Curr Opin Struct Biol 22(3):287–296

    Article  Google Scholar 

  • Mackereth CD, Madl T, Bonnal S, Simon B, Zanier K, Gasch A, Rybin V, Valcarcel J, Sattler M (2011) Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 475(7356):408–411

    Article  Google Scholar 

  • Maris C, Dominguez C, Allain FH-T (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272(9):2118–2131

    Article  Google Scholar 

  • Martin-Tumasz S, Reiter NJ, Brow DA, Butcher SE (2010) Structure and functional implications of a complex containing a segment of U6 RNA bound by a domain of Prp24. RNA 16(4):792–804

    Article  Google Scholar 

  • Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68(2):365–375

    Article  Google Scholar 

  • Mayeda A, Munroe SH, Xu RM, Krainer AR (1998) Distinct functions of the closely related tandem RNA-recognition motifs of hnRNP A1. RNA 4(9):1111–1123

    Article  Google Scholar 

  • Michel E, Skrisovska L, Wüthrich K, Allain FH (2013) Amino acid-selective segmental isotope labeling of multi-domain proteins for structural biology. Chembiochem (in press)

  • Michlewski G, Cáceres JF (2010) Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol 17(8):1011–1018

    Article  Google Scholar 

  • Michlewski G, Guil S, Semple CA, Cáceres JF (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393

    Article  Google Scholar 

  • Minato Y, Ueda T, Machiyama A, Shimada I, Iwai H (2012) Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J Biomol NMR 53(3):191–207

    Article  Google Scholar 

  • Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3(6):429–438

    Article  Google Scholar 

  • Myers JC, Shamoo Y (2004) Human UP1 as a model for understanding purine recognition in the family of proteins containing the RNA recognition motif (RRM). J Mol Biol 342(3):743–756

    Article  Google Scholar 

  • Myers JC, Moore SA, Shamoo Y (2003) Structure-based incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl) isoxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structures. J Biol Chem 278(43):42300–42306

    Article  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  ADS  Google Scholar 

  • Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL, Allain FH-T (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309(5743):2054–2057

    Article  ADS  Google Scholar 

  • Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci 2(4):543–558

    Article  Google Scholar 

  • Perez-Canadillas JM (2006) Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1. EMBO J 25(13):3167–3178

    Article  Google Scholar 

  • Piñol-Roma S, Dreyfuss G (1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355(6362):730–732

    Article  ADS  Google Scholar 

  • Pontius BW, Berg P (1990) Renaturation of complementary DNA strands mediated by purified mammalian heterogeneous nuclear ribonucleoprotein A1 protein: implications for a mechanism for rapid molecular assembly. Proc Natl Acad Sci U S A 87(21):8403–8407

    Article  ADS  Google Scholar 

  • Rückert M, Otting G (2000) Alignment of biological macromolecules in novel non ionic liquid crystalline media for NMR experiments. J Am Chem Soc 122(32):7793–7797

    Article  Google Scholar 

  • Safaee N, Kozlov G, Noronha AM, Xie J, Wilds CJ, Gehring K (2012) Inter domain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol Cell 48(3):375–386

    Article  Google Scholar 

  • Shamoo Y, Abdul-Manan N, Patten AM, Crawford JK, Pellegrini MC, Williams KR (1994) Both RNA-binding domains in heterogenous nuclear ribonucleoprotein A1 contribute toward single-stranded-RNA binding. Biochemistry 33(27):8272–8281

    Article  Google Scholar 

  • Shamoo Y, Abdul-Manan N, Williams KR (1995) Multiple RNA binding domains (RBDs) just don’t add up. Nucleic Acids Res 23(5):725–728

    Article  Google Scholar 

  • Shamoo Y, Krueger U, Rice LM, Williams KR, Steitz TA (1997) Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 a resolution. Nat Struct Biol 4(3):215–222

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  Google Scholar 

  • Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL (2006) Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 23(1):49–59

    Article  Google Scholar 

  • Skelton N, Palmer A, Akke M, Kordel J, Rance M, Chazin W (1993) Practical aspects of two-dimensional proton-detected 15 N spin relaxation measurements. J Magn Reson B 102(3):253–264

    Article  Google Scholar 

  • Skrisovska L, Allain FH-T (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375(1):151–164

    Article  Google Scholar 

  • Skrisovska L, Schubert M, Allain FH (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46(1):51–65

    Article  Google Scholar 

  • Southworth MW, Amaya K, Evans TC, Xu MQ, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27(1):110–114, 116, 118–120

    Google Scholar 

  • Teplova M, Song J, Gaw HY, Teplov A, Patel DJ (2010) Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure 18(10):1364–1377

    Article  Google Scholar 

  • Vitali J, Ding J, Jiang J, Zhang Y, Krainer AR, Xu R-M (2002) Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 30(7):1531–1538

    Article  Google Scholar 

  • Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FH-T (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25(1):150–162

    Article  Google Scholar 

  • Wang X, Tanaka Hall TM (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol 8(2):141–145

    Article  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242

    Article  Google Scholar 

  • Xu RM, Jokhan L, Cheng X, Mayeda A, Krainer AR (1997) Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. Structure 5(4):559–570

    Article  Google Scholar 

  • Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126(50):16632–16638

    Article  Google Scholar 

  • Yang X, Bani MR, Lu SJ, Rowan S, Ben-David Y, Chabot B (1994) The A1 and A1B proteins of heterogeneous nuclear ribo nucleoparticles modulate 5′ splice site selection in vivo. Proc Natl Acad Sci U S A 91(15):6924–6928

    Article  ADS  Google Scholar 

  • Zhang Q-S, Manche L, Xu R-M, Krainer AR (2006) hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 12(6):1116–1128

    Article  Google Scholar 

  • Zhang Y, Vasudevan S, Sojitrawala R, Zhao W, Cui C, Xu C, Fan D, Newhouse Y, Balestra R, Jerome WG, Weisgraber K, Li Q, Wang J (2007) A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry 46(37):10722–10732

    Article  Google Scholar 

  • Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J Am Chem Soc 119(29):6711–6721

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Adrian R. Krainer for the initial pET9d-hnRNPA1 plasmid and Dr. Erich Michel for vectors and helpful recommendations concerning segmentally labeled sample production. This project was supported by the Swiss National Science Foundation NCCR structural biology. PB was supported by the Postdoctoral ETH Fellowship Program and the Novartis Foundation, formerly Ciba-Geigy Jubilee Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric H.-T. Allain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barraud, P., Allain, F.HT. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. J Biomol NMR 55, 119–138 (2013). https://doi.org/10.1007/s10858-012-9696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9696-4

Keywords

Navigation