Skip to main content
Log in

Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

High amino acid coverage labeling of the mammalian G protein coupled receptors (GPCR) rhodopsin was established with 15N and 15N/13C isotopes. Rhodopsin was expressed at preparative scale in HEK293S cells and studied in full-length by NMR spectroscopy in detergent micelle solution. This resulted in the assignment and detailed study of the dynamic properties of the C-terminus of rhodopsin. The rhodopsin C-terminus is immobilized until Ala333, after which it becomes unstructured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15:684–698

    Article  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111

    Article  Google Scholar 

  • Keller R (2004) CANTINA Verlag, Goldau

  • Kennedy MJ, Lee KA, Niemi GA, Craven KB, Garwin GG, Saari JC, Hurley JB (2001) Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Neuron 31:87–101

    Article  Google Scholar 

  • Kisselev OG, Downs MA, McDowell JH, Hargrave PA (2004) Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions. J Biol Chem 279:51203–51207

    Article  Google Scholar 

  • Klein-Seetharaman J, Reeves PJ, Loewen MC, Getmanova EV, Chung J, Schwalbe H, Wright PE, Khorana HG (2002) Application of solution NMR spectroscopy to 15N-lysine labeled rhodopsin. Proc Natl Acad Sci U S A 99:3452–3457

    Article  ADS  Google Scholar 

  • Langen R, Cai K, Altenbach C, Khorana HG, Hubbell WL (1999) Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. Biochemistry 38:7918–7924

    Article  Google Scholar 

  • Lee KA, Craven KB, Niemi GA, Hurley JB (2002) Mass spectrometric analysis of the kinetics of in vivo rhodopsin phosphorylation. Protein Sci 11:862–874

    Article  Google Scholar 

  • Maeda T, Imanishi Y, Palczewski K (2003) Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res 22:417–434

    Article  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571–583

    Article  Google Scholar 

  • Oxenoid K, Kim HJ, Jacob J, Sonnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049

    Article  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller C, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  ADS  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Raman D, Osawa S, Gurevich VV, Weiss ER (2003) The interaction with the cytoplasmic loops of rhodopsin places a crucial role in arrestin activation and binding. J Neurochem 84:1040–1050

    Article  Google Scholar 

  • Raman D, Osawa S, Weiss ER (1999) Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin. Biochemistry 38:5117–5123

    Article  Google Scholar 

  • Reeves PJ, Kim JM, Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci U S A 99:13413–13418

    Article  ADS  Google Scholar 

  • Schubert M, Kolbe M, Kessler B, Oesterhelt D, Schmieder P (2002) Heteronuclear multidimensional NMR spectroscopy of solubilized membrane proteins: resonance assignment of bovine bacteriorhodopsin. Chem biochem 3:1019–1023

    Google Scholar 

  • Strauss A, Bitsch F, Fendrich G, Graff P, Knecht R, Meyhack B, Jahnke W (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J Biomol NMR 31:343–349

    Article  Google Scholar 

  • Trbovic N, Klammt C, Koglin A, Lohr F, Bernhard F, Dotsch V (2005) Efficient strategy for the rapid backbone assignment of membrane proteins. J Am Chem Soc 127:13504–13505

    Article  Google Scholar 

  • Werner K, Lehner I, Dhiman HK, Richter C, Glaubitz C, Schwalbe H, Klein-Seetharaman J, Khorana HG (2007) Assignment of tryptophan residues in the G-protein coupled receptor rhodopsin by NMR J Biomol NMR 37:303–312

    Article  Google Scholar 

  • Wood MJ, Sampoli Benitez BA, Komives EA (2000) Solution structure of the smallest cofactor-active fragment of thromobomodulin. Nat Struct Biol 7:200–204

    Article  Google Scholar 

  • Wyss DF, Dayie KT, Wagner G (1997) The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions. Protein Sci 6:534–542

    Article  Google Scholar 

Download references

Acknowledgments

We thank for the financial support from the Sofya Kovalevskaya-Award granted by the Alexander von Humboldt-Foundation through the Investment in the Future Programme of the German Federal Government. The work was supported by DFG (SFB 628: “Functional Membrane Proteomics”), the State of Hesse (BMRZ) and the Fonds der Chemischen Industrie (H.S.). We acknowledge support by Cambridge Isotope Laboratories with isotope labeled material.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Judith Klein-Seetharaman or Harald Schwalbe.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, K., Richter, C., Klein-Seetharaman, J. et al. Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40, 49–53 (2008). https://doi.org/10.1007/s10858-007-9205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9205-3

Keywords

Navigation