Skip to main content
Log in

AUREMOL-RFAC-3D, combination of R-factors and their use for automated quality assessment of protein solution structures

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present here the computer program AUREMOL-RFAC-3D that is a generalization of the previously published program RFAC for the fully automated estimation of residual indices (R-factors) from 2D NOESY spectra. It is part of the larger AUREMOL software package (www.auremol.de). RFAC-3D calculates R-factors directly from two-dimensional homonuclear NOESY spectra as well as from three-dimensional 15N or 13C edited NOESY-HSQC spectra and thus extends the application range to larger proteins. The fully automated method includes automated peak picking and integration, a Bayesian noise and artifact recognition and the use of the complete relaxation matrix formalism. To enhance the reliability of the calculated R-factors the method is also generalized to calculate combined R-factors from a set of 2D and 3D-spectra. For an optimal combination of the information derived from different sources a plausible formalism had to be derived. In addition, we present a novel direct R-factors based measure that correlates an R-factors as defined in this paper to the root mean square deviation of the actual structure from the optimal structure. The new program has been successfully tested on the histidine containing phosphocarrier protein (HPr) from Staphylococcus carnosus and on the Ras-binding domain (RBD) of the Ral guanine-nucleotide dissociation stimulation factor (RalGDS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPr:

histidine containing phosphocarrier protein

RalGDS-RBD:

Ral guanine-nucleotide dissociation stimulation factor

RBD:

Ras-binding domain

HSQC:

heteronuclear single quantum coherence

NOE:

nuclear Overhauser effect

NOESY:

nuclear Overhauser effect spectroscopy

rmsd:

root mean square deviation.

References

  • Antz C., Neidig K.-P., Kalbitzer H.R. (1995) J. Biomol. NMR 5:287–296

    Article  Google Scholar 

  • Baleja J.D., Moult J., Sykes B.D. (1990) J. Magn. Reson. 87:375–384

    Google Scholar 

  • Bonvin A.M.J.J., Boelens R., Kaptein R. (1991) J. Biomol. NMR 1:305–309

    Article  Google Scholar 

  • Borgias B.A., Gochin M., Kerwood D.J., James T.L. (1990) Prog. NMR Spectrosc. 22:83–100

    Article  Google Scholar 

  • Borgias B.A., James T.L. (1990) J. Magn. Reson. 87:475–487

    Google Scholar 

  • Brünger, A.T. (1993) XPLOR Manual Version 3.1, Yale University Press, New Haven. Ref Type: Computer Program

  • Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grossekunstleve R.W., Jiang J.-S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., Warren G.L. (1998) Acta Crystallogr. D54:905–921

    Google Scholar 

  • Brünger A.T., Campbell R.L., Clore G.M., Gronenborn A.M., Karplus M., Petsko G.A., Teeter M.M. (1987) Science 235:1049–1053

    Article  ADS  Google Scholar 

  • Brünger A.T., Clore G.M., Gronenborn A., Saffrich R., Nilges M. (1993) Science 261:328–331

    Article  ADS  Google Scholar 

  • Clore G.M., Robien M.A., Gronenborn A. (1993) J. Mol. Biol. 231:82–102

    Article  Google Scholar 

  • Cullinan D., Korobka A., Grollman A.P., Patel D.J., Eisenberg M., de los Santos C. (1996) Biochemistry 35:13319–13327

    Article  Google Scholar 

  • Geyer M., Herrmann C., Wohlgemuth S., Wittinghofer A. and Kalbitzer H.R. (19997) Nat. Struc. Biol., 4, 694–699

    Article  Google Scholar 

  • Geyer M., Neidig K.-P., Kalbitzer H.R. (1995) J. Magn Reson. B 109:31–38

    Article  Google Scholar 

  • Gonzalez C., Rullmann J.A.C., Bonvin A.M.J.J., Boelens R., Kaptein R. (1991) J. Magn. Reson. 91:659–664

    Google Scholar 

  • Görler A., Gronwald W., Neidig K.P., Kalbitzer H.R. (1999) J. Magn Reson. 137:39–45

    Article  ADS  Google Scholar 

  • Görler A., Hengstenberg W., Kravanja M., Beneicke W., Maurer T., Kalbitzer H.R. (1999) Appl. Magn. Reson. 17:465–480

    Article  Google Scholar 

  • Görler A., Kalbitzer H.R. (1997) J. Magn Reson. 124:177–188

    Article  Google Scholar 

  • Gronwald W., Kalbitzer H.R. (2004) Prog. NMR Spectrosc. 44:33–96

    Article  Google Scholar 

  • Gronwald W., Kirchhofer R., Gorler A., Kremer W., Ganslmeier B., Neidig K.P., Kalbitzer H.R. (2000) J. Biomol. NMR 17:137–151

    Article  Google Scholar 

  • Gronwald W., Moussa S., Elsner R., Jung A., Ganslmeier B., Trenner J., Kremer W., Neidig K.P., Kalbitzer H.R. (2002) J. Biomol. NMR 23:271–287

    Article  Google Scholar 

  • Gupta G., Sarma M.H., Sarma R.H. (1988) Biochemistry 27:7909–7919

    Article  Google Scholar 

  • Huang Y.P., Powers R., Montelione G.T. (2005) J. Am. Chem. Soc. 127:1665–1674

    Article  Google Scholar 

  • Hubner I.A., Shimada J., Shakhnovich E.I. (2004) J. Mol. Biol. 336:745–761

    Article  Google Scholar 

  • Lane A.N. (1990) Biochim. Biophys. Acta 1049:189–204

    Google Scholar 

  • Laskowski R.A., Rullmann J.A.C., MacArthur M.W., Kaptein R., Thornton J.M. (1996) J. Biomol. NMR 8:477–486

    Article  Google Scholar 

  • Lefevre J.-F., Lane A.N., Jardetzky O. (1987) Biochemistry 26:5076–5090

    Article  Google Scholar 

  • Linge J.P., Williams M.A., Spronk C.A.E.M., Bonvin A.M.J.J., Nilges M. (2003) Proteins 50:496–506

    Article  Google Scholar 

  • Lipari G., Szabo A. (1982a) J. Am. Chem. Soc. 104:4546–4559

    Article  Google Scholar 

  • Lipari G., Szabo A. (1982b) J. Am. Chem. Soc. 104:4559–4570

    Article  Google Scholar 

  • Mertz J.E., Güntert P., Wüthrich K., Braun W. (1991) J. Biomol. NMR 1:257–269

    Article  Google Scholar 

  • Nabuurs S.B., Nederveen A.J., Vranken W., Doreleijers J.F., Bonvin A.M.J.J., Vuister G.W., Vriend G., Spronk C.A.E.M. (2004) Proteins 55:483–486

    Article  Google Scholar 

  • Nikonowicz E.P., Meadows R.P., Gorenstein D.G. (1990) Biochemistry 29:4193–4204

    Article  Google Scholar 

  • Nilges M., Habazettl J., Brünger A.T., Holak T.A. (1991) J. Mol. Biol. 219:499–510

    Article  Google Scholar 

  • Ried A., Gronwald W., Trenner J.M., Brunner K., Neidig K.-P., Kalbitzer H.R. (2004) J. Biomol. NMR 30:121–131

    Article  Google Scholar 

  • Schulte A.C., Gorler A., Antz C., Neidig K.P., Kalbitzer H.R. (1997) J. Magn Reson. 129:165–172

    Article  ADS  Google Scholar 

  • Sippl M.J. (1993) Proteins 17:355–362

    Article  Google Scholar 

  • Thomas P.D., Basus V.J., James T.L. (1991) Proc. Natl. Acad. Sci. USA 88:1237–1241

    Article  ADS  Google Scholar 

  • Xu Y., Sugar I.P., Krishna N.R. (1995) J. Biomol. NMR 5:37–48

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Hengstenberg, C. Hermann and A.␣Wittinghofer for providing HPr from S. carnosus and RalGDS-RBD, respectively. This work is supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the European Commission (SPINE-consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Robert Kalbitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronwald, W., Brunner, K., Kirchhöfer, R. et al. AUREMOL-RFAC-3D, combination of R-factors and their use for automated quality assessment of protein solution structures. J Biomol NMR 37, 15–30 (2007). https://doi.org/10.1007/s10858-006-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9096-8

Keywords

Navigation