Skip to main content
Log in

PASA – A Program for Automated Protein NMR Backbone Signal Assignment by Pattern-Filtering Approach

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present a new program, PASA (Program for Automated Sequential Assignment), for assigning protein backbone resonances based on multidimensional heteronuclear NMR data. Distinct from existing programs, PASA emphasizes a per-residue-based pattern-filtering approach during the initial stage of the automated 13Cα and/or 13Cβ chemical shift matching. The pattern filter employs one or multiple constraints such as 13Cα/Cβ chemical shift ranges for different amino acid types and side-chain spin systems, which helps to rule out, in a stepwise fashion, improbable assignments as resulted from resonance degeneracy or missing signals. Such stepwise filtering approach substantially minimizes early false linkage problems that often propagate, amplify, and ultimately cause complication or combinatorial explosion of the automation process. Our program (http://www.lerner.ccf.org/moleccard/qin/) was tested on four representative small-large sized proteins with various degrees of resonance degeneracy and missing signals, and we show that PASA achieved the assignments efficiently and rapidly that are fully consistent with those obtained by laborious manual protocols. The results demonstrate that PASA may be a valuable tool for NMR-based structural analyses, genomics, and proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.S. Atreya S.C. Sahu K.V.R. Chary G. Govil (2000) J. Biomol. NMR 17 125–136 Occurrence Handle10.1023/A:1008315111278

    Article  Google Scholar 

  • M.C. Baran Y.P.J. Huang H.N.B. Moseley G.T. Montelione (2004) Chem. Rev. 104 3541–3555 Occurrence Handle10.1021/cr030408p

    Article  Google Scholar 

  • A. Bax S. Grzesiek (1993) Acc. Chem. Res. 26 131–138 Occurrence Handle10.1021/ar00028a001

    Article  Google Scholar 

  • Y.P. Chen I. Djaffar D. Pidard B. Steiner A.M. Cieutat J.P. Caen J.P. Rosa (1992) Proc. Natl. Acad. Sci. USA 89 10169–10173 Occurrence Handle1992PNAS...8910169C

    ADS  Google Scholar 

  • B.E. Coggins P. Zhou (2003) J. Biomol. NMR 26 93–111 Occurrence Handle10.1023/A:1023589029301

    Article  Google Scholar 

  • V. Dötsch R.E. Oswald G. Wagner (1996a) J. Magn. Reson. B 110 304–308

    Google Scholar 

  • V. Dötsch H. Matsu G. Wagner (1996b) J. Magn. Reson. B 112 95–100

    Google Scholar 

  • M.S. Friedrichs L. Mueller M. Wittekind (1994) J. Biomol. NMR 4 703–726 Occurrence Handle10.1007/BF00404279

    Article  Google Scholar 

  • K.H. Gardner X. Zhang K. Gehring L.E. Kay (1998) J. Amer. Chem. Soc 120 11738–11748 Occurrence Handle10.1021/ja982019w

    Article  Google Scholar 

  • D.S. Garrett R. Powers A.M. Gronenborn G.M. Clore (1991) J. Magn. Reson. 95 214–220

    Google Scholar 

  • W. Gronwald L. Willard T. Jellard R.F. Boyko K. Rajarathnam D.S. Wishart F.D. Sönnichsen B.D. Sykes (1998) J. Biomol. NMR 12 395–405 Occurrence Handle10.1023/A:1008321629308

    Article  Google Scholar 

  • P. Güntert M. Salzmann D. Braun K. Wüthrich (2000) J. Biomol. NMR 18 129–137 Occurrence Handle10.1023/A:1008318805889

    Article  Google Scholar 

  • B.J. Hare J.H. Prestegard (1994) J. Biomol. NMR 4 35–46 Occurrence Handle10.1007/BF00178334

    Article  Google Scholar 

  • T.K. Hitchens J.A. Lukin Y.P. Zhan S.A. McCallum G. Rule (2003) J. Biomol. NMR 25 1–9

    Google Scholar 

  • S.G. Hyberts G. Wagner (2003) J. Biomol. NMR 26 335–344 Occurrence Handle10.1023/A:1024078926886

    Article  Google Scholar 

  • Y.S. Jung M. Zweckstetter (2004) J. Biomol. NMR 30 11–23

    Google Scholar 

  • M. Leutner R.M. Gschwind J. Liermann C. Schwarz G. Gemmecker H. Kessler (1998) J. Biomol. NMR 11 31–43 Occurrence Handle10.1023/A:1008298226961

    Article  Google Scholar 

  • F. Lohr H. Ruterjans (2002) J. Magn. Reson. 156 IssueID1 10–18 Occurrence Handle10.1006/jmre.2002.2539 Occurrence Handle2002JMagR.156...10L

    Article  ADS  Google Scholar 

  • J.A. Lukin A.P. Gove S.N. Talukdar C. Ho (1997) J. Biomol. NMR 9 151–166 Occurrence Handle10.1023/A:1018602220061

    Article  Google Scholar 

  • D. Malmodin C.H.M. Papavoine M. Billeter (2003) J. Biomol. NMR 27 69–79 Occurrence Handle10.1023/A:1024765212223

    Article  Google Scholar 

  • R.P. Meadows E.T. Olejniczak S.W. Fesik (1994) J. Biomol. NMR 4 79–96 Occurrence Handle10.1007/BF00178337

    Article  Google Scholar 

  • N. Morelle B. Brutscher J-P. Simorre M.D. Morelle (1995) J. Biomol. NMR 5 154–160 Occurrence Handle10.1007/BF00208806

    Article  Google Scholar 

  • H.N. Moseley G.T. Montelione (1999) Curr. Opin. Struct. Biol. 9 635–642 Occurrence Handle10.1016/S0959-440X(99)00019-6

    Article  Google Scholar 

  • S. Rajesh J.G. Heddle K. Kurashima-Ito D. Nietlispach M. Shirakawa J.R. Tame Y. Ito (2005) J. Biol. NMR 32 177

    Google Scholar 

  • M. Schubert M. Smalla P. Schmieder H. Oschkinat (1999) J. Magn. Reson. 141 34–43 Occurrence Handle10.1006/jmre.1999.1881 Occurrence Handle1999JMagR.141...34S

    Article  ADS  Google Scholar 

  • M. Schubert H. Oschkinat P. Schmieder (2001a) J. Magn. Reson. 148 61–72 Occurrence Handle10.1006/jmre.2000.2222 Occurrence Handle2001JMagR.148...61S

    Article  ADS  Google Scholar 

  • M. Schubert H. Oschkinat P. Schmieder (2001b) J. Magn. Reson. 153 186–192 Occurrence Handle10.1006/jmre.2001.2447 Occurrence Handle2001JMagR.153..186S

    Article  ADS  Google Scholar 

  • B. Seavey E. Farr W. Westler J. Markley (1991) J. Biomol. NMR 1 217–236 Occurrence Handle10.1007/BF01875516

    Article  Google Scholar 

  • C.M. Slupsky R.F. Boyko V.K. Booth B.D. Sykes (2003) J. Biomol. NMR 27 313–21 Occurrence Handle10.1023/A:1025870122182

    Article  Google Scholar 

  • Y. Tu Y. Huang Y. Zhang Y. Hua C. Wu (2001) J. Cell Biol. 153 IssueID3 585–598 Occurrence Handle10.1083/jcb.153.3.585

    Article  Google Scholar 

  • V. Tugarinov R. Muhandiram A. Ayed L.E. Kay (2002) JACS 124 10025–10035 Occurrence Handle10.1021/ja0205636

    Article  Google Scholar 

  • J. Vaynberg T. Fukuda K. Chen O. Vinogradova A. Velyvis Y. Tu L. Ng C. Wu J. Qin (2005) Mol. Cell 17 IssueID4 513–523 Occurrence Handle10.1016/j.molcel.2004.12.031

    Article  Google Scholar 

  • A. Velyvis J. Vaynberg Y. Yang O. Vinogradova Y. Zhang C. Wu J. Qin (2003) Nat. Struct. Biol. 10 558–564 Occurrence Handle10.1038/nsb938

    Article  Google Scholar 

  • O. Vinogradova J. Vaynberg X.M. Kong T.A. Haas E.F. Plow J. Qin (2004) Proc. Natl. Acad. Sci. 101 4094–4099 Occurrence Handle10.1073/pnas.0400742101 Occurrence Handle2004PNAS..101.4094V

    Article  ADS  Google Scholar 

  • K. Wüthrich (1986) NMR of Proteins and Nucleic Acid Wiley New York, NY

    Google Scholar 

  • D. Zimmerman C. Kulikowski L.L. Wang B. Lyons G.T. Montelione (1994) J. Biomol. NMR 4 241–256 Occurrence Handle10.1007/BF00175251

    Article  Google Scholar 

  • D.E. Zimmerman C.A. Kulikowski Y.P. Huang W.Q. Feng M. Tashiro S. Shimotakahara C.Y. Chien R. Powers G.T. Montelione (1997) JMB 269 592–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Qin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Wang, X., Yang, J. et al. PASA – A Program for Automated Protein NMR Backbone Signal Assignment by Pattern-Filtering Approach. J Biomol NMR 34, 41–56 (2006). https://doi.org/10.1007/s10858-005-5358-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-5358-0

Keywords

Navigation