Skip to main content
Log in

Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole–dipole interactions and the associated “spin diffusion” due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRIPT:

cross relaxation-induced polarization transfer

DOTA:

1, 4, 7, 10-tetra-acetic acid-1, 4, 7, 10-tetraazacyclododecane

TROSY:

transverse relaxation-optimized spectroscopy

References

  • K. Akasaka M. Konrad R.S. Goody (1978) FEBS Lett. 96 287–290 Occurrence Handle10.1016/0014-5793(78)80419-0 Occurrence Handle729799

    Article  PubMed  Google Scholar 

  • C. Bartels P. Güntert K. Wüthrich (1995a) J. Magn. Reson. A 117 330–333 Occurrence Handle10.1006/jmra.1995.0780

    Article  Google Scholar 

  • C. Bartels T.H. Xia M. Billeter P. Güntert K. Wüthrich (1995b) J. Biomol. NMR 6 1–10 Occurrence Handle10.1007/BF00417486

    Article  Google Scholar 

  • A. Bax S. Grzesiek (1993) Accounts Chem. Res. 26 131–138 Occurrence Handle10.1021/ar00028a001

    Article  Google Scholar 

  • F. Bloch (1946) Phys. Rev. 70 460–473 Occurrence Handle10.1103/PhysRev.70.460

    Article  Google Scholar 

  • P. Caravan J.J. Ellison T.J. McMurry R.B. Lauffer (1999) Chem. Rev. 99 2293–2352 Occurrence Handle10.1021/cr980440x Occurrence Handle11749483

    Article  PubMed  Google Scholar 

  • C.A. Chang L.C. Francesconi M.F. Malley K. Kumar J.Z. Gougoutas M.F. Tweedle D.W. Lee L.J. Wilson (1993) Inorg. Chem. 32 3501–3508 Occurrence Handle10.1021/ic00068a020

    Article  Google Scholar 

  • A. Eletsky O. Moreira H. Kovacs K. Pervushin (2003) J. Biomol. NMR 26 167–179 Occurrence Handle10.1023/A:1023572320699 Occurrence Handle12766412

    Article  PubMed  Google Scholar 

  • R.R. Ernst G. Bodenhausen A. Wokaun (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford University Press Oxford

    Google Scholar 

  • J. Fiaux E.B. Bertelsen A.L. Horwich K. Wüthrich (2002) Nature 418 207–211 Occurrence Handle10.1038/nature00860 Occurrence Handle12110894

    Article  PubMed  Google Scholar 

  • S. Grzesiek A. Bax (1993) J. Am. Chem. Soc. 115 12593–12594 Occurrence Handle10.1021/ja00079a052

    Article  Google Scholar 

  • P. Güntert V. Dötsch G. Wider K. Wüthrich (1992) J. Biomol. NMR 2 619–629

    Google Scholar 

  • C. Hilty G. Wider C. Fernández K. Wüthrich (2004) Chembiochem 5 467–473 Occurrence Handle10.1002/cbic.200300815 Occurrence Handle15185370

    Article  PubMed  Google Scholar 

  • L.E. Kay (1997) Prog. Biophys. Mol. Biol. 63 277–299 Occurrence Handle10.1016/0079-6107(95)00007-0

    Article  Google Scholar 

  • R.B. Lauffer (1987) Chem. Rev. 87 901–927 Occurrence Handle10.1021/cr00081a003

    Article  Google Scholar 

  • D.M. LeMaster (1994) Prog. Nucl. Magn. Reson. Spectrosc. 26 371–419 Occurrence Handle10.1016/0079-6565(94)80010-3

    Article  Google Scholar 

  • E. Liepinsh G. Otting (1997) Nat. Biotechnol. 15 264–268 Occurrence Handle10.1038/nbt0397-264 Occurrence Handle9062927

    Article  PubMed  Google Scholar 

  • G. Otting (1997) Prog. Nucl. Magn. Reson. Spectrosc. 31 259–285 Occurrence Handle10.1016/S0079-6565(97)00012-5

    Article  Google Scholar 

  • K. Pervushin R. Riek G. Wider K. Wüthrich (1997) Proc. Natl. Acad. Sci. USA 94 12366–12371 Occurrence Handle10.1073/pnas.94.23.12366 Occurrence Handle9356455

    Article  PubMed  Google Scholar 

  • K. Pervushin B. Vögeli A. Eletsky (2002) J. Am. Chem. Soc. 124 12898–12902 Occurrence Handle10.1021/ja027149q Occurrence Handle12392438

    Article  PubMed  Google Scholar 

  • G. Pintacuda G. Otting (2002) J. Am. Chem. Soc. 124 372–373 Occurrence Handle10.1021/ja016985h Occurrence Handle11792196

    Article  PubMed  Google Scholar 

  • R. Riek J. Fiaux E.B. Bertelsen A.L. Horwich K. Wüthrich (2002) J. Am. Chem. Soc. 124 12144–12153 Occurrence Handle10.1021/ja026763z Occurrence Handle12371854

    Article  PubMed  Google Scholar 

  • R. Riek G. Wider K. Pervushin K. Wüthrich (1999) Proc. Natl. Acad. Sci. USA 96 4918–4923 Occurrence Handle10.1073/pnas.96.9.4918 Occurrence Handle10220394

    Article  PubMed  Google Scholar 

  • M. Sattler S.W. Fesik (1997) J. Am. Chem. Soc. 119 7885–7886 Occurrence Handle10.1021/ja971356m

    Article  Google Scholar 

  • V. Sklenar M. Piotto R. Leppik V. Saudek (1993) J. Magn. Reson. A 102 241–245 Occurrence Handle10.1006/jmra.1993.1098

    Article  Google Scholar 

  • J.D. Stoesz A.G. Redfield D. Malinowski (1978) FEBS Lett. 91 320–324 Occurrence Handle10.1016/0014-5793(78)81201-0 Occurrence Handle680139

    Article  PubMed  Google Scholar 

  • Y.X. Wang D.I. Freedberg S. Grzesiek D.A. Torchia P.T. Wingfield J.D. Kaufman S.J. Stahl C.H. Chang C.N. Hodge (1996) Biochemistry 35 12694–12704 Occurrence Handle10.1021/bi9610764 Occurrence Handle8841113

    Article  PubMed  Google Scholar 

  • G. Wider (1998) Prog. Nucl. Magn. Reson. Spectrosc. 32 193–275 Occurrence Handle10.1016/S0079-6565(98)00014-4

    Article  Google Scholar 

  • G. Wider R.V. Hosur K. Wüthrich (1983) J. Magn. Reson. 52 130–135

    Google Scholar 

  • K. Wüthrich (1986) NMR of Proteins and Nucleic Acids Wiley New York

    Google Scholar 

  • K. Wüthrich (2003) Angew. Chem. Int. Ed. 42 3340–3363 Occurrence Handle10.1002/anie.200300595

    Article  Google Scholar 

  • K. Wüthrich G. Wider (2003) Magn. Reson. Chem. 41 S80–S88 Occurrence Handle10.1002/mrc.1280

    Article  Google Scholar 

  • Z.H. Xu A.L. Horwich P.B. Sigler (1997) Nature 388 741–750 Occurrence Handle10.1038/41944 Occurrence Handle9285585

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wider.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiller, S., Wider, G., Etezady-Esfarjani, T. et al. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32, 61–70 (2005). https://doi.org/10.1007/s10858-005-3070-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-3070-8

Keywords

Navigation