Skip to main content

Advertisement

Log in

Maxillary sinus floor elevation using Beta-Tricalcium-Phosphate (beta-TCP) or natural bone: same inflammatory response

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Sinus elevation is a common procedure to increase bone volume in the atrophic maxilla to allow placement of dental implants. Autogenous bone is the gold standard but is limited in quantity and causes morbidity at the donor site. β-TCP is a synthetic biomaterial commonly used in that purpose. It appears to induce a poor inflammatory response. This study aimed to evaluate the degree of edema of the sinus mucosa after sinus lift surgery according to the type of biomaterial. Forty sinuses (20 patients) were included retrospectively and divided into 2 groups according to the biomaterial that was used: synthetic biomaterial (BTCP group), natural bone (BONE group). A control group (CTRL group) was constituted by the non-grafted maxillary sinuses. Twelve measurements per sinus were realized on pre- and post-operative computed tomography and averaged to provide the sinus membrane thickness value (SM.Th). SM.Th was thicker post-operatively in the BTCP and BONE groups in comparison with the CTRL group and in comparison with pre-operative measurements. No difference was found post operatively between the BTCP and BONE groups. We found that a synthetic biomaterial (β-TCP) induced the same degree of edema, and thus of inflammation, as natural bone. It constitutes therefore an interesting alternative to autogenous bone for maxillary sinus lifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Corinaldesi G, Piersanti L, Piattelli A, Iezzi G, Pieri F, Marchetti C. Augmentation of the floor of the maxillary sinus with recombinant human bone morphogenetic protein-7: a pilot radiological and histological study in humans. Br J Oral Maxillofac Surg. 2013;51:247–52.

    Article  Google Scholar 

  2. Mays S. Resorption of mandibular alveolar bone following loss of molar teeth and its relationship to age at death in a human skeletal population. Am J Phys Anthr. 2014;153:643–52.

    Article  Google Scholar 

  3. Silva LD, de Lima VN, Faverani LP, de Mendonca MR, Okamoto R, Pellizzer EP. Maxillary sinus lift surgery-with or without graft material? A systematic review. Int J Oral Maxillofac Surg. 2016;45:1570–6.

    Article  Google Scholar 

  4. Nielsen HB, Schou S, Isidor F, Christensen AE, Starch-Jensen T. Short implants (</=8mm) compared to standard length implants (>8mm) in conjunction with maxillary sinus floor augmentation: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2018. https://doi.org/10.1016/j.ijom.2018.05.010.

  5. Rapani M, Rapani C, Ricci L. Schneider membrane thickness classification evaluated by cone-beam computed tomography and its importance in the predictability of perforation. Retrospective analysis of 200 patients. Br J Oral Maxillofac Surg. 2016;54:1106–10.

    Article  CAS  Google Scholar 

  6. Guillaume B. Dental implants: a review. Morphologie. 2016;100:189–98.

    Article  CAS  Google Scholar 

  7. Guillaume B. Filling bone defects with beta-TCP in maxillofacial surgery: a review. Morphologie. 2017;101:113–9.

    Article  CAS  Google Scholar 

  8. Precheur HV. Bone graft materials. Dent Clin North Am. 2007;51:729–46.

    Article  Google Scholar 

  9. Browaeys H, Bouvry P, De Bruyn H. A literature review on biomaterials in sinus augmentation procedures. Clin Implant Dent Relat Res. 2007;9:166–77.

    Article  Google Scholar 

  10. de Lacerda PE, Pelegrine AA, Teixeira ML, Montalli VAM, Rodrigues H, Napimoga MH. Homologous transplantation with fresh frozen bone for dental implant placement can induce HLA sensitization: a preliminary study. Cell tissue Bank. 2016;17:465–72.

    Article  Google Scholar 

  11. Kim Y, Rodriguez AE, Nowzari H. The risk of prion infection through bovine grafting materials. Clin Implant Dent Relat Res. 2016;18:1095–102.

    Article  Google Scholar 

  12. Chappard D, Guillaume B, Mallet R, Pascaretti-Grizon F, Baslé MF, Libouban H. Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron. 2010;41:321–6.

    Article  CAS  Google Scholar 

  13. Nyangoga H, Aguado E, Goyenvalle E, Baslé MF, Chappard D. A non-steroidal anti-inflammatory drug (ketoprofen) does not delay beta-TCP bone graft healing. Acta Biomater. 2010;6:3310–7.

    Article  CAS  Google Scholar 

  14. Engström H, Chamberlain D, Kiger R, Egelberg J. Radiographic evaluation of the effect of initial periodontal therapy on thickness of the maxillary sinus mucosa. J Periodontol. 1988;59:604–8.

    Article  Google Scholar 

  15. Monje A, Diaz KT, Aranda L, Insua A, Garcia-Nogales A, Wang HL. Schneiderian membrane thickness and clinical implications for sinus augmentation: a systematic review and meta‐regression analyses. J Periodontol. 2016;87:888–99.

    Article  CAS  Google Scholar 

  16. Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 1980;38:613–6.

    CAS  Google Scholar 

  17. Arbez B, Kün-Darbois JD, Convert T, Guillaume B, Mercier P, Hubert L, Chappard. D. Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. J Biomed Mater Res B Appl Biomater. 2019;107:415–23.

    Article  CAS  Google Scholar 

  18. Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006;2:102–13.

    Article  Google Scholar 

  19. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Investig. 2017;127:2030–9.

    Article  Google Scholar 

  20. Konttinen YT, Ma J, Lappalainen R, Laine P, Kitti U, Santavirta S, et al. Immunohistochemical evaluation of inflammatory mediators in failing implants. Int J Periodontics Restor Dent. 2006;26:2.

  21. Pereira RS, Gorla LF, Boos F, Okamoto R, Garcia IR Jr, Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF. Int J Oral Maxillofac Surg. 2017;46:503–10.

    Article  CAS  Google Scholar 

  22. Danesh-Sani SA, Loomer PM, Wallace SS. A comprehensive clinical review of maxillary sinus floor elevation: anatomy, techniques, biomaterials and complications. Br J Oral Maxillofac Surg. 2016;54:724–30.

    Article  Google Scholar 

  23. Cardoso CL, Curra C, Santos PL, Rodrigues MF, Ferreira-Júnior O, de Carvalho PS. Current considerations on bone substitutes in maxillary sinus lifting. Rev. Clín. Periodo. Implant Rehabil Oral. 2016;9:102–7.

    Google Scholar 

  24. Kübler A, Neugebauer J, Oh J-H, Scheer M, Zöller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes an in vitro study. Implant Dent. 2004;13:171–9.

    Article  Google Scholar 

  25. Kato E, Lemler J, Sakurai K, Yamada M. Biodegradation property of beta‐tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with bio-oss collagen® in a rat critical-size defect model. Clin Implant Dent Relat Res. 2014;16:202–11.

    Article  Google Scholar 

  26. de Lange GL, Overman JR, Farré-Guasch E, Korstjens CM, Hartman B, Langenbach GE, Van Duin MA, Klein-Nulend J. A histomorphometric and micro–computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2014;117:8–22.

    Article  Google Scholar 

  27. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res. 1997;8:117–24.

    Article  CAS  Google Scholar 

  28. Schwartz Z, Weesner T, Van Dijk S, Cochran D, Mellonig J, Lohmann C, Carnes D, Goldstein M, Dean D, Boyan B. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodo. 2000;71:1258–69.

    Article  CAS  Google Scholar 

  29. Lee DS, Pai Y, Chang S. Physicochemical characterization of InterOss® and Bio-Oss® anorganic bovine bone grafting material for oral surgery—a comparative study. Mater Chem Phys. 2014;146:99–104.

    Article  CAS  Google Scholar 

  30. Gorla LF, Spin-Neto R, Boos FB, Pereira Rdos S, Garcia-Junior IR, Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective, randomized, volumetric computed tomography study. Int J Oral Maxillofac Surg. 2015;44:1486–91.

    Article  Google Scholar 

  31. Pascaretti-Grizon F, Guillaume B, Terranova L, Arbez B, Libouban H, Chappard D. Maxillary sinus lift with beta-tricalcium phosphate (beta-TCP) in edentulous patients: a nanotomographic and raman study. Calcif Tissue Int. 2017;101:280–90.

    Article  CAS  Google Scholar 

  32. Filmon R, Retailleau-Gaborit N, Brossard G, Grizon-Pascaretti F, Baslé MF, Chappard D. MicroCT and preparation of ß-TCP granular material by the polyurethane foam method. Image Anal Stereo. 2009;28:103–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Kün-Darbois.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental protocol was approved by the local ethical committee of Angers University Hospital (protocol number 2017-050) and was done in accordance with the institutional guidelines of the French Ethical Committee and with the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loin, J., Kün-Darbois, JD., Guillaume, B. et al. Maxillary sinus floor elevation using Beta-Tricalcium-Phosphate (beta-TCP) or natural bone: same inflammatory response. J Mater Sci: Mater Med 30, 97 (2019). https://doi.org/10.1007/s10856-019-6299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6299-6

Navigation