Skip to main content
Log in

In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The objective of this study was to fabricate and characterize chitosan combined with different amounts of simvastatin-loaded nanoparticles and to investigate their potential for guided bone regeneration in vitro and in vivo. Different SIM-CSN formulations were combined into a chitosan scaffold (SIM-CSNs-S), and the morphology, simvastatin release profile, and effect on cell proliferation and differentiation were investigated. For in vivo experiments, ectopic osteogenesis and the critical-size cranial defect model in SD rats were chosen to evaluate bone regeneration potential. All three SIM-CSNs-S formulations had a porous structure and exhibited sustained simvastatin release. CSNs-S showed excellent degradation and biocompatibility characteristics. The 4 mg SIM-CSNs-S formulation stimulated higher BMSC ALP activity levels, demonstrated significantly earlier collagen enhancement, and led to faster bone regeneration than the other formulations. SIM-CSNs-S should have a significant effect on bone regeneration.

Highlights

  • Simvastatin-loaded nanoparticles of chitosan.

  • The preparing process of Chitosan scaffolds combined with simvastatin loaded is simple, low-cost and environmental friendly.

  • A sustained release of simvastatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9. https://doi.org/10.1016/j.biomaterials.2011.09.009

    Article  CAS  Google Scholar 

  2. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.

    Article  CAS  Google Scholar 

  3. Park JB. The use of simvastatin in bone regeneration. Med Oral Patol Oral Cir Bucal. 2009;14:e485–8.

  4. Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res. 2006;85:520–3.

    Article  CAS  Google Scholar 

  5. Alam S, Ueki K, Nakagawa K, Marukawa K, Hashiba Y, Yamamoto E, et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:22–9. https://doi.org/10.1016/j.tripleo.2008.06.025

    Article  Google Scholar 

  6. Sonobe M, Hattori K, Tomita N, Yoshikawa T, Aoki H, Takakura Y, et al. Stimulatory effects of statins on bone marrow-derived mesenchymal stem cells. Study of a new therapeutic agent for fracture. Biomed Mater Eng. 2005;15:261–7.

    CAS  Google Scholar 

  7. Takenaka M, Hirade K, Tanabe K, Akamatsu S, Dohi S, Matsuno H, et al. Simvastatin stimulates VEGF release via p44/p42 MAP kinase in vascular smooth muscle cells. Biochem Biophys Res Commun. 2003;301:198–203.

    Article  CAS  Google Scholar 

  8. Gutierrez GE, Lalka D, Garrett IR, Rossini G, Mundy GR. Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations. Osteoporos Int. 2006;17:1033–42. https://doi.org/10.1007/s00198-006-0079-0

    Article  CAS  Google Scholar 

  9. Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, et al. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol. 2005;76:1861–70.

    Article  CAS  Google Scholar 

  10. Thylin MR, Mcconnell JC, Schmid MJ, Reckling RR, Ojha J, Bhattacharyya I, et al. Effects of simvastatin gels on murine calvarial bone. J Periodontol. 2002;73:1141–8.

    Article  CAS  Google Scholar 

  11. Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T, et al. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci. 2007;104:384–6.

    Article  CAS  Google Scholar 

  12. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7.

    Article  CAS  Google Scholar 

  13. Tai I, Fu Y, Wang C, Chang J, Ho M. Local delivery of controlled-release simvastatin/PLGA/HAp microspheres enhances bone repair. Int J Nanomed. 2013;8:3895–905.

    Google Scholar 

  14. Chen S, Yang J, Zhang SY, Feng L, Ren J. Effects of simvastatin gel on bone regeneration in alveolar defects in miniature pigs. Chin Med J (Engl). 2011;124:3953–8.

    CAS  Google Scholar 

  15. Liu Y, Ou M, Liu H, Gu M, Lv L, Fan C, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials. 2014;35:4489–98.

    Article  CAS  Google Scholar 

  16. Lee JB, Kim JE, Balikov DA, Bae MS, Heo DN, Lee D, et al. Poly(l-lactic acid)/gelatin fibrous scaffold loaded with simvastatin/beta-cyclodextrin-modified hydroxyapatite inclusion complex for bone tissue regeneration. Macromol Biosci. 2016;16:1027–38. https://doi.org/10.1002/mabi.201500450

    Article  CAS  Google Scholar 

  17. Huang X, Huang Z, Li W. Highly efficient release of simvastatin from simvastatin-loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits. Mol Med Rep. 2014;9:2152–8. https://doi.org/10.3892/mmr.2014.2101

    Article  CAS  Google Scholar 

  18. Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69:581.

    CAS  Google Scholar 

  19. Shavi GV, Nayak UY, Reddy MS, Karthik A, Deshpande PB, Kumar AR, et al. Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2011;22:865–78.

    Article  CAS  Google Scholar 

  20. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  21. Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.

    Article  CAS  Google Scholar 

  22. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.

    Article  CAS  Google Scholar 

  23. Martins AF, De Oliveira DM, Pereira AGB, Rubira AF, Muniz EC. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int J Biol Macromol. 2012;51:1127–33.

    Article  CAS  Google Scholar 

  24. Ma S, Chen Z, Qiao F, Sun Y, Yang X, Deng X, et al. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. J Dent. 2014;42:1603–12.

    Article  CAS  Google Scholar 

  25. Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21:567–76.

    Article  Google Scholar 

  26. Lee J, Nam S, Im S, Park Y, Lee Y, Seol Y, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78:187–97.

    Article  CAS  Google Scholar 

  27. Cerchiara T, Abruzzo A, Cagno MD, Bigucci F, Bauerbrandl A, Parolin C, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm. 2015;92:112–9.

    Article  CAS  Google Scholar 

  28. Nath SD, Linh NT, Sadiasa A, Lee BT. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. J Biomater Appl. 2014;28:1151–63.

    Article  Google Scholar 

  29. He Y, Dong Y, Cui F, Chen X, Lin R. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS ONE. 2015;10:e0135366.

    Article  Google Scholar 

  30. Shavi GV, Nayak UY, Reddy MS, Karthik A, Deshpande PB, Kumar AR, et al. Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2011;22:865–78. https://doi.org/10.1007/s10856-011-4274-y

    Article  CAS  Google Scholar 

  31. Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–42.

    Article  CAS  Google Scholar 

  32. Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials. 2001;22:331–6.

    Article  CAS  Google Scholar 

  33. Neffe AT, Pierce BF, Tronci G, Ma N, Pittermann E, Gebauer T, et al. One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration. Adv Mater. 2015;27:1738–44.

    Article  CAS  Google Scholar 

  34. Polocorrales L, Latorreesteves M, Ramirezvick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56.

    Article  CAS  Google Scholar 

  35. Brien FJO, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  Google Scholar 

  36. Cho WJ, Kim JH, Oh SH, Nam HH, Kim JM, Lee JH. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration. J Biomed Mater Res A. 2009;91:400–7.

    Article  Google Scholar 

  37. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res. 2005;340:2403–10.

    Article  CAS  Google Scholar 

  38. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.

    Article  CAS  Google Scholar 

  39. Mundy GR, Garrett R, Harris SE, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.

    Article  CAS  Google Scholar 

  40. Baek KH, Lee W, Oh KW, Tae HJ, Lee JM, Lee EJ, et al. The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J Korean Med Sci. 2005;20:438–44.

    Article  CAS  Google Scholar 

  41. Solomon DH, Finkelstein JS, Wang PS, Avorn J. Statin lipid-lowering drugs and bone mineral density. Pharmacoepidemiol Drug Saf. 2005;14:219–26.

    Article  CAS  Google Scholar 

  42. Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Control Release. 2015;215:12–24.

    Article  CAS  Google Scholar 

  43. Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun. 2003;308:458–62.

    Article  CAS  Google Scholar 

  44. Solomon DH, Finkelstein JS, Wang PS, Avorn J. Statin lipid-lowering drugs and bone mineral density. Pharmacoepidemiol Drug Saf. 2005;14:219–26.

    Article  CAS  Google Scholar 

  45. Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, et al. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012;21:655–67.

    Article  CAS  Google Scholar 

  46. Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 2002;43:529–34.

    Article  CAS  Google Scholar 

  47. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  CAS  Google Scholar 

  48. Anderson JM, Mcnally AK. Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol. 2011;33:221–33.

    Article  CAS  Google Scholar 

  49. Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82:903–8.

    Article  CAS  Google Scholar 

  50. Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B. 2015;103:243–53.

    Article  Google Scholar 

  51. De Peppo GM, Marcoscampos I, Kahler DJ, Alsalman D, Shang L, Vunjaknovakovic G, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2013;110:8680–5.

    Article  Google Scholar 

  52. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A. 2014;20:3142–53.

    Article  CAS  Google Scholar 

  53. Nikukar H, Reid SWJ, Tsimbouri PM, Riehle MO, Curtis ASG, Dalby MJ. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano. 2013;7:2758–67.

    Article  CAS  Google Scholar 

  54. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant no: 81571016, Grant no: 51272181 and Grant no: 51672030), the science and technology development fund project of Tianjin University (Grant no: 20110410) and the scientific research fund of Stomatology Hospital Affiliated with Tianjin Medical University (Grant no: 2013YKYQ01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deping Liu, Yanqiu Li or Xu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wu, M., Liu, Z. et al. In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration. J Mater Sci: Mater Med 30, 47 (2019). https://doi.org/10.1007/s10856-019-6249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6249-3

Navigation