Skip to main content

Advertisement

Log in

Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, novel composites membranes composed of chitosan matrix and polyhedral oligomeric silsesquioxanes (POSS) were fabricated by solvent casting method. The effect of POSS loading on the mechanical, morphological, chemical, thermal and surface properties, and cytocompatibility of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of Octa-TMA POSS® nanofiller to the chitosan matrix increased the surface roughness, protein adsorption and swelling capacity of membranes. The addition of POSS enhanced significantly the ultimate tensile strength and strain at break of the composite membranes up to 3 wt% POSS loaded samples. An increase of about 76% in tensile strength and of strain at break 1.28% was achieved for 3 wt% POSS loaded nanocomposite membranes compared with chitosan membranes. The presence of POSS filler into polymer matrix increased the plasma protein adsorption on the surface. Maximum protein capacity and swelling was obtained for 10 wt% loaded samples. High cell viability results were obtained with indirect extraction of chitosan/POSS composites. Besides, cell proliferation and ALP activity results showed that POSS incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. This novel composite membranes with tunable properties could be considered as a potential candidate for guided bone regeneration applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghanbari H, de Mel A, Seifalian AM. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int J Nanomed. 2011;6:775–86.

    Google Scholar 

  2. Christenson EM, Anseth KS, Jeroen JJ, van den Beucken P, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li W, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG. Nanobiomaterial applications in orthopedics. J Orthop Res. 2006;25:11–22.

  3. Ruiz-Hitzky E, Darder M, Aranda P. An introduction to bio-nanohybrid materials. Bio-inorganic hybrid nanomaterials strategies, syntheses, characterization and applications. Weinheim: Wiley-VCH; 2008. pp. 1–32.

    Google Scholar 

  4. Pielichowska K, Blazewicz S. Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. Adv Polym Sci. 2010;232:97–207.

    Article  Google Scholar 

  5. Razak SIA, Sharif NFA, Rahman WAWA. Biodegradable polymers and their bone applications: a review. Int Basic Appl Sci. 2012;12:31–49.

  6. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM. Polyhedral oligomeric sisesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res. 2005;38:879–84.

    Article  Google Scholar 

  7. Zhao C, Yang X, Wu X, Liu X, Wang X, Lu L. Preparation and characterization of poly (methyl methacrylate) nanocomposites containing octavinyl polyhedral oligomeric silsesquioxane. Polym Bull. 2008;60:495–505.

    Article  Google Scholar 

  8. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21.

    Article  Google Scholar 

  9. Chew SL, Wang K, Chai SP, Goh KL. Elasticity, thermal stability and bioactivity of polyhedral oligomeric silsesquioxanes reinforced chitosan-based microfibres. J Mater Sci Mater Med. 2011;22:1365–74.

    Article  Google Scholar 

  10. Arca HÇ, Şenel S. Chitosan based systems for tissue engineering part 1: hard tissues. FABAD J Pharm Sci. 2008;33:35–49.

    Google Scholar 

  11. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.

    Article  Google Scholar 

  12. Wu CJ, Gaharwar AK, Schexnailder PJ, Schmidt G. Development of biomedical polymer-silicate nanocomposites: a materials science perspective. Materials. 2010;3:2986–3005.

    Article  Google Scholar 

  13. Madhumathi K, Sudheesh Kumar PT, Kavya KC, Furuike T, Tamura H, Nair SV, Jayakumar R. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2009;45:289–92.

    Article  Google Scholar 

  14. Puchol V, El Haskouri J, Latorre J, Guillem C, Beltrán A, Beltrán D, Amorós P. Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Chem Commun. 2009;19:2694–6.

    Article  Google Scholar 

  15. Phillips SH, Haddad TS, Tomczak SJ. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci. 2004;8:21–9.

    Article  Google Scholar 

  16. Li G, Wang L, Ni H, Pittman CU Jr. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym. 2001;11:123–54.

    Article  Google Scholar 

  17. Wu X, Sun Y, Xie W, Liu Y, Song X. Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS). Dent Mater. 2009;26:456–62.

    Article  Google Scholar 

  18. Bleha M, Tishchenko G, Pientka Z, Brus J. Effect of POSS™ functionality on morphology of thin hybrid chitosan membranes. Des Monomers Polym. 2004;7:25–43.

    Article  Google Scholar 

  19. Pielichowski K, Njuguna J, Janowski B, Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv Polym Sci. 2006;201:225–96.

    Article  Google Scholar 

  20. Ghanbari H, Cousins BG, Seifalian AM. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun. 2011;32:1032–46.

    Article  Google Scholar 

  21. Majumdar P, He J, Lee E, Kallam A, Gubbins N, Stafslien SJ, Chisholm BJ. Antimicrobial activity of polysiloxane coatings containing quaternary ammonium-functionalized polyhedral oligomeric silsesquioxane. J Coat Technol Res. 2010;7:455–67.

    Article  Google Scholar 

  22. An YZ, Flodin JT, Fu X, Kemp Z, Lichtenhan JD, Schwab JJ. U.S. Patent No. 7,572,872. Washington, DC: US Patent and Trademark Office; 2009.

  23. Escoffier, L, Ganau, M, & Wong, J. Commercializing nanomedicine: industrial applications, patents, and ethics. Florida, USA: CRC Press, 2015.

  24. Ha Y-M, Amna T, Kim M-H, Kim H-C, Hassan MS, Khil M-S. Novel silicificated PVAc/POSS composite nanofibrous mat via facile electrospinning technique: potential scaffold for hard tissue engineering. Colloids Surf B. 2013;102:795–802.

    Article  Google Scholar 

  25. Fernandez MD, Fernandez MJ, Cobos M. Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci. 2016;51:3628–42.

    Article  Google Scholar 

  26. Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S. Surface-charged chitosan: preparation and protein adsorption. Carbohydr Polym. 2007;68:44–53.

    Article  Google Scholar 

  27. Hsieh W, Chang C, Lin S. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf B. 2007;57:250–5.

    Article  Google Scholar 

  28. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell viability assays. 2016:1–47.

  29. Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B. 2011;17:331–47.

    Article  Google Scholar 

  30. Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials. 2004;25:2721–30.

    Article  Google Scholar 

  31. Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochim Et Biophys Acta. 2007;1770:1538–47.

    Article  Google Scholar 

  32. Yuan Y, Lee TR. Contact angle and wetting properties. In Bracco G, Holst B, editors. Surface science techniques. Berlin, Heidelberg, Germany: Springer-Verlag; 2013. pp. 3–34.

  33. Liu L, Hu Y, Song L, Nazare S, He S, Hull R. Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci. 2007;42:4325–4333.

    Article  Google Scholar 

  34. Marchessault RH, Ravenelle F, Zhu XX. Polysaccharides for drug delivery and pharmaceutical applications. Am Chem Soc. 2006.

  35. Xu XY, Kim KM, Hanna MA. Chitosan-starch composite film: preparation and characterization. Ind Crops Prod. 2005;21:185–92.

    Article  Google Scholar 

  36. De Souza Costa-Junior E, Pereira Marivalda M, Mansur Herman S. Properties and cytocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med. 2009;20:2553–61.

    Article  Google Scholar 

  37. Rao KK, Naidu BVK, Subha MCS, Sairam M, Aminabhavi TM. Novel chitosan based pH sensitive interpenetrating network microgels fort the controlled release of cefadroxil. Carbohhydr Polym. 2006;66:333–44.

    Article  Google Scholar 

  38. Ayers MR, Hunt AJ. Synthesis and properties of chitosan–silica hybrid aerogels. J Non-Cryst Solids. 2001;285:123–7.

    Article  Google Scholar 

  39. Pandis C, Madeira S, Matos J, Kyritsis A, Mano JF, Ribelles JLG. Chitosan-silica hybrid porous membranes. Mater Sci Eng C. 2014;42:553–61.

    Article  Google Scholar 

  40. Zhao Y, Schiraldi DA. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer. 2005;46:11640–7.

    Article  Google Scholar 

  41. Eshel H, Dahan L, Dotan A, Dodiuk H, Kenig S. Nanotailoring of nanocomposite hydrogels containing POSS. Polym Bull. 2008;61:257–65.

    Article  Google Scholar 

  42. Putlyaev VI, Safronova TV. A new generation of calcium phosphate biomaterials: the role of phase and chemical compositions. Glass Ceram. 2006;63:99–102.

    Article  Google Scholar 

  43. Terranova L, Dragusin DM, Mallet R, Vasile E, Stancu IC, Behets C, Chappard D. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles. Micron. 2017;93:29–37.

    Article  Google Scholar 

  44. Rezaie HR, Bakhtiari L, Öchsner A. Tissue response in biomaterials. In Biomaterials and their applications, SpringerBriefs in Materials. Cham, Switzerland: Springer; 2015. pp. 47–9.

  45. Hartmann-Thompson, C (Ed.). Applications of polyhedral oligomeric silsesquioxanes (Vol. 3). New York, USA: Springer Science & Business Media; 2011.

  46. Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H, Seifalian AM. Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg. 2007;119:1653–62.

    Article  Google Scholar 

  47. Crowley C, Klanrit P, Butler CR, Varanou A, Platé M, Hynds RE, Janes SM. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283–93.

    Article  Google Scholar 

  48. Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozóky B, Crowley C, Hermanson O. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet. 2011;378:1997–2004.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Project of İzmir Institute of Technology (No.2011 İYTE02). The authors are grateful to İzmir Institute of Technology (Iztech) Biotechnology and Bioengineering Research and Application Center for fluorescence microscopy analyses and Centre for Material Research for AFM analysis. The authors thank to Assist Prof. Dr. Meltem Alper from Aksaray University for supplying SaOS-2 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Tihminlioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamburaci, S., Tihminlioglu, F. Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration. J Mater Sci: Mater Med 29, 1 (2018). https://doi.org/10.1007/s10856-017-6005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-6005-5

Navigation