Skip to main content

Advertisement

Log in

Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, biomechanical behaviors of three different screw materials (stainless steel, titanium and cobalt–chromium) have analyzed to fix with triangle fixation under axial loading in femoral neck fracture and which material is best has been investigated. Point cloud obtained after scanning the human femoral model with the three dimensional (3D) scanner and this point cloud has been converted to 3D femoral model by Geomagic Studio software. Femoral neck fracture was modeled by SolidWorks software for only triangle configuration and computer-aided numerical analyses of three different materials have been carried out by AnsysWorkbench finite element analysis (FEA) software. The loading, boundary conditions and material properties have prepared for FEA and Von-Misses stress values on upper and lower proximity of the femur and screws have been calculated. At the end of numerical analyses, the best advantageous screw material has calculated as titanium because it creates minimum stress at the upper and lower proximity of the fracture line.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000;15(5):675–90.

    Google Scholar 

  2. Verdonschot N, Huiskes R. The effects of cement-stem debonding in THA on the long-term failure probability of cement. J Biomech. 1997;30(8):795–802. doi:10.1016/S0021-9290(97)00038-9.

    Article  Google Scholar 

  3. Andress H, Kahl S, Kranz C, Gierer P, Schürmann M, Lob G. Clinical and finite element analysis of a modular femoral prosthesis consisting of a head and stem component in the treatment of pertrochanteric fractures. J Orthop Trauma. 2000;14(8):546–53.

    Article  Google Scholar 

  4. Waide V, Cristofolini L, Stolk J, Verdonschot N, Boogaard GJ, Toni A. Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods. J Biomech. 2004;37(1):13–26. doi:10.1016/S0021-9290(03)00258-6.

    Article  Google Scholar 

  5. Colombi P. Fatigue analysis of cemented hip prosthesis: model definition and damage evolution algorithms. Int J Fatigue. 2002;24(8):895–901. doi:10.1016/S0142-1123(01)00203-1.

    Article  Google Scholar 

  6. Senalp AZ, Kayabasi O, Kurtaran H. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater Des. 2007;28(5):1577–83. doi:10.1016/j.matdes.2006.02.015.

    Article  Google Scholar 

  7. Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw. 2006;37(10):649–58. doi:10.1016/j.advengsoft.2006.02.004.

    Article  Google Scholar 

  8. Gok K, Inal S. Biomechanical comparison using finite element analysis of different screw configurations in the fixation of femoral neck fractures. Mech Sci. 2015;6(2):173–9. doi:10.5194/ms-6-173-2015.

    Article  Google Scholar 

  9. Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduction. Comput-Aided Des. 1997;29(4):255–68. doi:10.1016/S0010-4485(96)00054-1.

    Article  Google Scholar 

  10. Goffin JM, Pankaj P, Simpson AH. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. J Orthopaed Res. 2013;31(4):596. doi:10.1002/jor.22266.

    Article  Google Scholar 

  11. Yuan-Kun T, Yau-Chia L, Wen-Jen Y, Li-Wen C, You-Yao H, Yung-Chuan C et al. editors. Temperature rise simulation during a Kirschner pin drilling in bone. Bioinformatics and biomedical engineering, 2009. ICBBE 2009. 3rd International Conference on; 2009 11–13 June 2009; Beijing.

  12. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34. doi:10.1016/j.biomaterials.2005.10.003.

    Article  Google Scholar 

  13. Gok K, Inal S, Gok A, Pinar AM. Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures. J Braz Soc Mech Sci Eng. 2016;1–9. doi:10.1007/s40430-016-0666-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Gok.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gok, K., Inal, S., Gok, A. et al. Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures. J Mater Sci: Mater Med 28, 81 (2017). https://doi.org/10.1007/s10856-017-5890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5890-y

Navigation