Skip to main content

Advertisement

Log in

Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Understanding the response of mesenchymal stem cells (MSCs) in the dynamic biomechanical vascular environment is important for vascular regeneration. Native vessel biomechanical stimulation in vitro is thought to be the most important contributor to successful endothelial differentiation of MSCs. However, the appropriate biomechanical stimulation conditions for differentiating MSCs into ECs have not been fully investigated. To accomplish an in vivo-like loading environment, a loading system was designed to apply flow induced stress and induce hMSC differentiation in vascular cells. Culturing MSCs on tubular scaffolds under flow-induced shear stress (2.5 dyne/cm2) for 4 days results in increased mRNA levels of EC markers (vWF, CD31, VE-cadherin and E-selectin) after one day. Furthermore, we investigated the effects of 2.5 dyne/cm2 shear stress followed by 3 % circumferential stretch for 3 days, and an additional 5 % circumferential stretch for 4 days on hMSC differentiation into ECs. EC marker protein levels showed a significant increase after applying 5 % stretch, while SMC markers were not present at levels sufficient for detection. Our results demonstrate that the expression of several hMSC EC markers cultured on double-layered tubular scaffolds were upregulated at the mRNA and protein levels with the application of fluid shear stress and cyclic circumferential stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bordenave L, Menu P, Baquey C. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices. 2008;5(3):337–47.

    Article  Google Scholar 

  2. Shinoka T, Breuer C. Tissue-Engineered Blood Vessels in Pediatric Cardiac Surgery. Yale J Biol Med. 2008;81(4):161–6.

    Google Scholar 

  3. Conte MS. The ideal small arterial substitute: a search for the Holy Grail? FASEB J. 1998;12:43–5.

    Google Scholar 

  4. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12:59–64.

    Article  Google Scholar 

  5. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg. 2002;23:475–85.

    Article  Google Scholar 

  6. Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288(3):H1451–60.

    Article  Google Scholar 

  7. Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, Kuppevelt THV, Dijkstra PJ, de Vos RA, Sterk LM, Geelkerken BR, Feijen J, Vermes I. Tissue engineering of blood vessels: characterization of smooth- muscle cells for culturing on collagen and elastin based scaffolds. Biotech Appl Biochem. 2004;39(2):141–9.

    Article  Google Scholar 

  8. Yow KH, Ingram J, Korossis ISA, Ingham E, Homer-Vanniasinkam S. Tissue engineering of vascular conduits. Br J Surg. 2006;93(6):652–61.

    Article  Google Scholar 

  9. Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 2010;6(1):110–22.

    Article  Google Scholar 

  10. Barocas VH, Girton TS, Tranquillo RT. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J Biomech Eng. 1998;120:660–6.

    Article  Google Scholar 

  11. Alobaid N, Salacinski HJ, Sales KM, Hamilton G, Seifalian AM. Single stage cell seeding of small diameter prosthetic cardiovascular grafts. Clin Hemorheol Microcirc. 2005;3:209–26.

    Google Scholar 

  12. Gotlieb AI. Smooth muscle and endothelial cell function in the pathogenesis of atherosclerosis. Can Med Assoc J. 1982;126(8):903–8.

    Google Scholar 

  13. Hoerstrupa SP, ZuÈnda G, Sodianb R, Schnellc AM, Gruenenfeldera J, Turinaa MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg. 2001;20:164–9.

    Article  Google Scholar 

  14. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–84.

    Article  Google Scholar 

  15. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol. 2005;25(9):1817–23.

    Article  Google Scholar 

  16. Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol. 2004;32(12):1238–45.

    Article  Google Scholar 

  17. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng. 2004;88(3):359–68.

    Article  Google Scholar 

  18. O’Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 2008;29:1610–9.

    Article  Google Scholar 

  19. Dong JD, Huang JH, Gao F, Zhu ZH, Zhang J. Mesenchymal stem cell-based tissue engineering of small-diameter blood vessels. Vascular. 2011;19(4):206–13.

    Article  Google Scholar 

  20. Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, Cui L. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials. 2010;31:621–30.

    Article  Google Scholar 

  21. Dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D’Amore PA. Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci. 2012;125:831–43.

    Article  Google Scholar 

  22. Zhu C, Fan D, Duan Z, Xue W, Shang L, Chen F, Luo Y. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J of Biomed Mater Res A. 2009;89(3):829–40.

    Article  Google Scholar 

  23. Xu CY, Inai R, Kotaki M, Ramakrishnaa S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877–86.

    Article  Google Scholar 

  24. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials. 2005;26(12):1405–11.

    Article  Google Scholar 

  25. Moa XM, Xub CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.

    Article  Google Scholar 

  26. Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ. The mechanical behavior of vascular grafts: a review. J Biomater Appl. 2001;15(3):241–78.

    Article  Google Scholar 

  27. Kim DH, Heo SJ, Kim SH, Shin JW, Park SH, Shin JW. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett. 2011;33(12):2351–9.

    Article  Google Scholar 

  28. Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V. Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis. 2007;49:307–29.

    Article  Google Scholar 

  29. Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res. 2002;278(1):72–83.

    Article  Google Scholar 

  30. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  Google Scholar 

  31. Bai K, Huang Y, Jia X, Fana Y, Wang W. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech. 2010;43(6):1176–81.

    Article  Google Scholar 

  32. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ. Role of Vascular Endothelial Growth Factor in Bone Marrow Stromal Cell Modulation of Endothelial Cells. Tissue Eng. 2003;9(1):95–103.

    Article  Google Scholar 

  33. Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Eng. 2004;10(3–4):361–9.

    Article  Google Scholar 

  34. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008;22:1635–48.

    Article  Google Scholar 

  35. Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, Chen B, Li JX, Zhang SW, Wang ZG, Zhang J. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin. 2009;30:530–6.

    Article  Google Scholar 

  36. Moore JE Jr, Bürki E, Suciu A, Zhao S, Burnier M, Brunner HR, Meister JJ. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann Biomed Eng. 1994;22(4):416–22.

    Article  Google Scholar 

  37. Toda M, Yamamoto K, Shimizu N, Obi S, Kumagaya S, Igarashi T, Kamiya A, Ando J. Differential gene responses in endothelial cells exposed to a combination of shear stress and cyclic stretch. J Biotechnol. 2008;133(2):239–44.

    Article  Google Scholar 

  38. Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, Towne JB, Bernhard VM, Bonier P, Flinn WR, Astelford P, Yao JST, Bergan JJ. Six year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3:104–14.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Technology Innovation Program (10038667, Ministry of Knowledge Economy, ROK) and Priority Research Centers Program (2010-0020224, the Ministry of Education, Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Woog Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Heo, SJ., Kang, Y.G. et al. Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. J Mater Sci: Mater Med 27, 60 (2016). https://doi.org/10.1007/s10856-016-5670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5670-0

Keywords

Navigation