Skip to main content
Log in

Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films

  • Special Issue: ESB 2014
  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Advances in material sciences have enabled the fabrication of biomaterials which are able to provide the requisite cues to stimulate cells to behave in a specific way. Nanoscale surface topographies are well known to be able to positively influence cell–substrate interactions. This study reports on a novel series of poly(ε-caprolactone) PCL and poly(methyl methacrylate) demixed nanotopographic films as non-biological cell-stimulating cues. The topographic features observed ranged from nanoislands to nanopits. PMMA was observed to segregate to the air interface, while PCL preferred the substrate interface. Preliminary response of human mesenchymal stem cells to these surfaces indicated that the substrate with nanoisland topography has the potential to differentiate to osteogenic, chondrogenic and adipogenic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anselme K, Ploux L, Ponche A. Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol. 2010;24(5):831–52.

    Article  Google Scholar 

  2. Lord MS, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010;5(1):66–78.

    Article  Google Scholar 

  3. Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27(27):4783–93.

    Article  Google Scholar 

  4. D’Sa RA, Burke GA, Meenan BJ. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater. 2010;6(7):2609–20.

    Article  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  Google Scholar 

  6. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–33.

    Article  Google Scholar 

  7. Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 1995;5(1):1–4.

    Article  Google Scholar 

  8. Bruch M, Landwehr R, Engel J. Dissection of laminin by cathepsin G into its long-arm and short-arm structures and localization of regions involved in calcium dependent stabilization and self-association. Eur J Biochem. 1989;185(2):271–9.

    Article  Google Scholar 

  9. Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, et al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol. 1981;150(1):97–120.

    Article  Google Scholar 

  10. Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell. 2003;4(5):613–24.

    Article  Google Scholar 

  11. Weir ML, Oppizzi ML, Henry MD, Onishi A, Campbell KP, Bissell MJ, et al. Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. J Cell Sci. 2006;119(19):4047–58.

    Article  Google Scholar 

  12. Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz A, Roskelley C, et al. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995;129(3):591–603.

    Article  Google Scholar 

  13. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990;4(2):148–60.

    Google Scholar 

  14. Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, et al. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials. 2003;24(16):2731–8.

    Article  Google Scholar 

  15. Dalby M, Childs S, Riehle M, Johnstone H, Affrossman S, Curtis A. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials. 2003;24(6):927–35.

    Article  Google Scholar 

  16. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.

    Article  Google Scholar 

  17. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637–44.

    Article  Google Scholar 

  18. Dalby M, Riehle M, Johnstone H, Affrossman S, Curtis A. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23(14):2945–54.

    Article  Google Scholar 

  19. Affrossman S, Henn G, O’Neill SA, Pethrick RA, Stamm M. Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends. Macromolecules. 1996;29(14):5010–6.

    Article  Google Scholar 

  20. Ton-That C, Shard A, Bradley R. Surface feature size of spin cast PS/PMMA blends. Polymer. 2002;43(18):4973–7.

    Article  Google Scholar 

  21. Ton-That C, Shard A, Teare D, Bradley R. XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer. 2001;42(3):1121–9.

    Article  Google Scholar 

  22. Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(d, l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003;24(23):4181–90.

    Article  Google Scholar 

  23. Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface. 2005;2(2):97–108.

    Article  Google Scholar 

  24. Berry CC, Dalby MJ, McCloy D, Affrossman S. The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials. 2005;26(24):4985–92.

    Article  Google Scholar 

  25. Dalby M, Giannaras D, Riehle M, Gadegaard N, Affrossman S, Curtis A. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials. 2004;25(1):77–83.

    Article  Google Scholar 

  26. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23(14):2945–54.

    Article  Google Scholar 

  27. Affrossman S, Stamm M. The effect of molecular weight on the topography of thin films of blends of poly (4-bromostyrene) and polystyrene. Colloid Polym Sci. 2000;278(9):888–93.

    Article  Google Scholar 

  28. Ton-That C, Shard AG, Bradley RH. Surface feature size of spin cast PS/PMMA blends. Polymer. 2002;43(18):4973–7.

    Article  Google Scholar 

  29. Tanaka K, Takahara A, Kajiyama T. Surface molecular aggregation structure and surface molecular motions of high-molecular-weight polystyrene/low-molecular-weight poly(methyl methacrylate) blend films. Macromolecules. 1998;31(3):863–9.

    Article  Google Scholar 

  30. Raczkowska J, Bernasik A, Budkowski A, Sajewicz K, Penc B, Lekki J, et al. Structures formed in spin-cast films of polystyrene blends with poly(butyl methacrylate) isomers. Macromolecules. 2004;37(19):7308–15.

    Article  Google Scholar 

  31. Tanaka K, Yoon J-S, Takahara A, Kajiyama T. Ultrathinning-induced surface phase separation of polystyrene/poly(vinyl methyl ether) blend film. Macromolecules. 1995;28(4):934–8.

    Article  Google Scholar 

  32. Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomed Nanotechnol Biol Med. 2010;6(5):619–33.

    Article  Google Scholar 

  33. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.

    Article  Google Scholar 

  34. Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med. 2007;18(2):399–404.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Riaz Akhtar for the use of the AFM. This study was supported by the use of resources at the School of Engineering and the Institute of Aging and Chronic Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raechelle A. D’Sa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, M., Pu, F., Curran, J.M. et al. Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films. J Mater Sci: Mater Med 26, 178 (2015). https://doi.org/10.1007/s10856-015-5507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5507-2

Keywords

Navigation