Skip to main content

Advertisement

Log in

Inflammatory cytokine release is affected by surface morphology and chemistry of titanium implants

  • Special Issue: ESB 2014
  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To investigate in vitro cellular cytokine expression in relation to commercially pure titanium discs, comparing a native surface to a fluorinated oxide nanotube surface. Control samples pure titanium discs with a homogenous wave of the margins and grooves and an often smeared-out surface structure. Test samples pure titanium discs with a fluorinated titanium oxide chemistry and surface morphology with nanopore/tube geometry characterized by ordered structures of nanotubes with a diameter of ≈120 nm, a spacing of ≈30 nm, and a wall thickness of ≈10 nm. Cross-section view showed vertically aligned nanotubes with similar lengths of ≈700 nm. Peripheral blood mononuclear leucocytes were cultured for 1, 3, and 6 days according to standard procedures. BioPlex Pro™ assays were used for analysis and detection of cytokines. Selected inflammatory cytokines are reported. A pronounced difference in production of the inflammatogenic cytokines was observed. Leucocytes exposed to control coins produced significantly more TNF-α, IL-1ß, and IL-6 than the test nanotube coins. The effect on the TH2 cytokine IL-4 was less pronounced at day 6 compared to days 1 and 3, and slightly higher expressed on the control coins. The morphology and surface chemistry of the titanium surface have a profound impact on basic cytokine production in vitro. Within the limitations of the present study, it seems that the fluorinated oxide nanotube surface results in a lower inflammatory response compared to a rather flat surface that seems to favour inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.

    Article  Google Scholar 

  2. Hunt JA, Abrams K, Williams DF. Modelling the pattern of cell distribution around implanted materials. Anal Chem Pathol. 1994;7:43–52.

    Google Scholar 

  3. Moucha CS, Einhorn TA. Enhancement of skeletal repair. In: Browner BD, Jupiter JB, Levine AM, Trafton PG, editors. Skeletal trauma. Philadelphia: WB Saunders; 2003. p. 639–59.

    Google Scholar 

  4. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(2011):551–5.

    Article  Google Scholar 

  5. Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007;38:S11–25.

    Article  Google Scholar 

  6. Sul YT, Johansson CB, Wennerberg A, Cho L-R, Jang B-S, Albrektsson T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofacc Implant. 2005;20(3):349–59.

    Google Scholar 

  7. Sul YT, Kang BS, Johansson CB, Um HS, Park CJ, Albrektsson T. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J Biomed Mater Res, Part A. 2009;89:942–50.

    Article  Google Scholar 

  8. Rajyalakshmi A, Ercan B, Balasubramanian K, Webster T. Reduced adhesion of macrophages on anodized titanium with selected nanotube surface features. Int J Nanomed. 2011;6:1765–71.

    Google Scholar 

  9. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7(6):1686–91.

    Article  Google Scholar 

  10. Sul YT. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int J Nanomed. 2010;5:87–100.

    Article  Google Scholar 

  11. Neacsu P, Mazare A, Cimpean A, Park J, Costache M, Schmuki P, Demetrescu I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol C. 2014;55:187–95. doi:10.1016/j.biocel.2014.09.006.

    Article  Google Scholar 

  12. Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grinmes CA, Desai TA. In vitro inflammatory response of nanostructured titania, silicon oxid, and polycaprolaceton. J Biomed Mater Res, Part A. 2009;91:647–55. doi:10.1002/jbm.a.a32262.

    Article  Google Scholar 

  13. Jacobsen SS, Larsen A, Stoltenberg M, Bruun JM, Soballe K. Effects of as-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages. Eur Cells Mater. 2007;14:45–55.

    Google Scholar 

  14. StPierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jaones EA, Finberg RW. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear particles. J Orthop Res. 2010;28:1418–24.

    Article  Google Scholar 

  15. Cachinho SCP, Pu F, Hunt JA. Cytokine secretion from human peripheral blood mononuclear cells cultured in vitro with metal particles. J Biomed Mater Res, Part A. 2013;101:1201–9.

    Article  Google Scholar 

  16. Spyrou P, Papaioannou S, Hampson G, Brady K, Palmer EM, McDonald F. Cytokine release by osteoblast-like cells cultured on implant discs of varying alloy compositions. Clin Oral Implant Res. 2002;13:623–30.

    Article  Google Scholar 

  17. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatroy cytokines and cehmokines. J Biomed Mater Res Part A. 2004;70:194–205. doi:10.1002/jbm.a.30075.

    Article  Google Scholar 

  18. Schwartz-Filho HO, Morandini CF, Ramos-Junior ES, Jimbo R, Santos CF, Marcantonio E Jr, Wennerberg A, Marcantonio RAC. Titanium surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts. J Biomed Mater Res, Part A. 2012;100:2629–36.

    Article  Google Scholar 

  19. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2 nanotube surface: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small. 2009;5(6):666–71. doi:10.1002/small.200801476.

    Article  Google Scholar 

  20. Chang PC, Lang NP, Giannobile WV. Review. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants Clin Oral Implant Res. 2010;21:1–12.

    Google Scholar 

  21. Ma X, Xu S. TNF inhibitor therapy for rheumatoid arthritis. Rev Biomed Rep. 2013;1(2):177–84. doi:10.4172/scientificreports.155.

    Google Scholar 

  22. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R. Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy Drug Targets. 2013;12(5):349–61.

    Article  Google Scholar 

  23. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett. 2008;8(3):786–93.

    Article  Google Scholar 

  24. von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E, Schlegel KA. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B. 2009;89(1):165–71. doi:10.1002/jbm.b.31201.

    Article  Google Scholar 

  25. Johansson CB, Gretzer C, Jimbo R, Mattisson I, Ahlberg E. Enhanced implant integration with hierarchically structured implants: a pilot study in rabbits Clin. Oral Implant Res. 2012;23:943–53. doi:10.1111/j.1600-0501.2011.02233.x.

    Article  Google Scholar 

  26. Chen S, Jones JA, Xu Y, Low H-Y, Anderson JM, Leong KW. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 2010;31(13):3479–91. doi:10.1016/j.biomaterials.2010.01.074.

    Article  Google Scholar 

  27. Omar O, Svensson S, Zoric N, Lennerås M, Suska F, Wigren S, Hall J, Nannmark U, Thomsen P. In vivo gene expression in response to anodically oxodozed versus machined titanium implants. J Biomed Mater Res A. 2010;92:1552–66.

    Google Scholar 

  28. Mendonca G, Mendonca DBS, Aragao FJL, Cooper LF. Advancing dental implant surface technology—from micron—to nanotopography. Biomaterials. 2008;29:3822–55.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Wilhelm & Martina Lundgrens Science Fund and the TUA “Agreement concerning research and education of doctors”, 20140225TUAGBG-365041, Göteborg, Sweden for financial support.

Conflict of interest

No conflict of interests exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina B. Johansson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Östberg, AK., Dahlgren, U., Sul, YT. et al. Inflammatory cytokine release is affected by surface morphology and chemistry of titanium implants. J Mater Sci: Mater Med 26, 155 (2015). https://doi.org/10.1007/s10856-015-5486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5486-3

Keywords

Navigation