Skip to main content

Advertisement

Log in

Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds

  • Tissue Engineering Constructs and Cell Substrates
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Treatment of non-healing wounds represents hitherto a severe dilemma because of their failure to heal caused by repeated tissue insults, bacteria contamination and altered physiological condition. This leads to face huge costs for the healthcare worldwide. To this end, the development of innovative biomaterials capable of preventing bacterial infection, of draining exudates and of favoring wound healing is very challenging. In this study, we exploit a novel technique based on the slow diffusion of tripolyphosphate for the preparation of macroscopic chitosan hydrogels to obtain soft pliable membranes which include antimicrobial silver nanoparticles (AgNPs) stabilized by a lactose-modified chitosan (Chitlac). UV–Vis and TEM analyses demonstrated the time stability and the uniform distribution of AgNPs in the gelling mixture, while swelling studies indicated the hydrophilic behavior of membrane. A thorough investigation on bactericidal properties of the material pointed out the synergistic activity of chitosan and AgNPs to reduce the growth of S. aureus, E. coli, S. epidermidis, P. aeruginosa strains and to break apart mature biofilms. Finally, biocompatibility assays on keratinocytes and fibroblasts did not prove any harmful effects on the viability of cells. This novel technique enables the production of bioactive membranes with great potential for the treatment of non-healing wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97:2892–923.

    Article  Google Scholar 

  2. Lee SJ, Heo DN, Moon J-H, Ko W-K, Lee JB, Bae MS, et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym. 2014;111:530–7.

    Article  Google Scholar 

  3. Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol. 2014;68:635–41.

    Article  Google Scholar 

  4. Zhao G, Usui ML, Lippman SI, James GA, Stewart PS, Fleckman P, et al. Biofilms and inflammation in chronic wounds. Adv. Wound Care. 2013;2:389–99.

    Article  Google Scholar 

  5. James GA, Swogger E, Wolcott R, deLancey Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44.

    Article  Google Scholar 

  6. Falanga V. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis. 2004;32:88–94.

    Article  Google Scholar 

  7. Martin P. Wound healing–aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  Google Scholar 

  8. Gunasekaran T, Nigusse T, Dhanaraju MD. Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec. 2011;3:82–96.

    Article  Google Scholar 

  9. Paphitou NI. Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agents. 2013;42(Suppl):S25–8.

    Article  Google Scholar 

  10. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents. 2014;43:508–17.

    Article  Google Scholar 

  11. Reithofer MR, Lakshmanan A, Ping ATK, Chin JM, Hauser CAE. In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties. Biomaterials. 2014;35:7535–42.

    Article  Google Scholar 

  12. Taglietti A, Arciola CR, D’Agostino A, Dacarro G, Montanaro L, Campoccia D, et al. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35:1779–88.

    Article  Google Scholar 

  13. Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med. 2010;21:807–13.

    Article  Google Scholar 

  14. Klasen H. A historical review of the use of silver in the treatment of burns, II. Renewed interest for silver. Burns. 2000;26:131–8.

    Article  Google Scholar 

  15. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  Google Scholar 

  16. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, et al. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10:1429–35.

    Article  Google Scholar 

  17. Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, et al. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater. 2013;9:5088–99.

    Article  Google Scholar 

  18. Nganga S, Travan A, Marsich E, Donati I, Söderling E, Moritz N, et al. In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants. J Mater Sci Mater Med. 2013;24:2775–85.

    Article  Google Scholar 

  19. Marsich E, Bellomo F, Turco G, Travan A, Donati I, Paoletti S. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med. 2013;24:1799–807.

    Article  Google Scholar 

  20. Sacco P, Borgogna M, Travan A, Marsich E, Paoletti S, Asaro F, et al. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: synthesis and characterization. Biomacromolecules. 2014;15:3396–405.

    Article  Google Scholar 

  21. Donati I, Borgogna M, Turello E, Cesàro A, Paoletti S. Tuning supramolecular structuring at the nanoscale level: nonstoichiometric soluble complexes in dilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules. 2007;8:1471–9.

    Article  Google Scholar 

  22. Donati I, Haug IJ, Scarpa T, Borgogna M, Draget KI, Skjåk-Braek G, et al. Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules. 2007;8:957–62.

    Article  Google Scholar 

  23. D’Amelio N, Esteban C, Coslovi A, Feruglio L, Uggeri F, Villegas M, et al. Insight into the molecular properties of Chitlac, a chitosan derivative for tissue engineering. J Phys Chem B. 2013;117:13578–87.

    Article  Google Scholar 

  24. Donati I, Stredanska S, Silvestrini G, Vetere A, Marcon P, Marsich E, et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials. 2005;26:987–98.

    Article  Google Scholar 

  25. Donati I, Travan A, Pelillo C, Scarpa T, Coslovi A, Bonifacio A, et al. Polyol synthesis of silver nanoparticles: mechanism of reduction by alditol bearing polysaccharides. Biomacromolecules. 2009;10:210–3.

    Article  Google Scholar 

  26. Brambilla E, Ionescu A, Gagliani M, Cochis A, Arciola CR, Rimondini L. Biofilm formation on composite resins for dental restorations: an in situ study on the effect of chlorhexidine mouthrinses. Int J Artif Organs. 2012;35:792–9.

    Article  Google Scholar 

  27. Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater. 2013;9:7093–114.

    Article  Google Scholar 

  28. Travan A, Marsich E, Donati I, Benincasa M, Giazzon M, Felisari L, et al. Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater. 2011;7:337–46.

    Article  Google Scholar 

  29. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.

    Article  Google Scholar 

  30. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  Google Scholar 

  31. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  Google Scholar 

  32. Silva JM, Georgi N, Costa R, Sher P, Reis RL, Van Blitterswijk CA, et al. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering (Barbosa MA, editor). PLoS One. 2013;8:e55451.

    Article  Google Scholar 

  33. Barui A, Khare R, Dhara S, Banerjee P, Chatterjee J. Ex vivo bio-compatibility of honey-alginate fibrous matrix for HaCaT and 3T3 with prime molecular expressions. J Mater Sci Mater Med. 2014;25:2659–67.

    Article  Google Scholar 

  34. Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials. 2014;35:4706–15.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Friuli-Venezia Giulia Regional Government (Project: “Nuovi biomateriali per terapie innovative nel trattamento delle ferite difficili”-LR 47/78). The financial support to P.S. (PhD position) by the Friuli-Venezia Giulia Regional Government and by the European Social Fund (S.H.A.R.M. project-Supporting human assets in research and mobility) is gratefully acknowledged. Miss Greta Galiussi and Dr. Renzo Menegazzi are thanked for their skillful assistance in the experimental part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Sacco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacco, P., Travan, A., Borgogna, M. et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci: Mater Med 26, 128 (2015). https://doi.org/10.1007/s10856-015-5474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5474-7

Keywords

Navigation