Skip to main content
Log in

Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Complex architecture of natural tissues such as nerves requires the use of multifunctional scaffolds with peculiar topological and biochemical signals able to address cell behavior towards specific events at the cellular (microscale) and macromolecular (nanoscale) level. In this context, the electrospinning technique is useful to generate fiber assemblies having peculiar fiber diameters at the nanoscale and patterned by unidirectional ways, to facilitate neurite extension via contact guidance. Following a bio-mimetic approach, fully aligned polycaprolactone fibers blended with gelatin macromolecules have been fabricated as potential bioactive substrate for nerve regeneration. Morphological and topographic aspects of electrospun fibers assessed by SEM/AFM microscopy supported by image analyses elaboration allow estimating an increase of fully aligned fibers from 5 to 39 % as collector rotating rate increases from 1,000 to 3,000 rpm. We verify that fully alignment of fibers positively influences in vitro response of hMSC and PC-12 cells in neurogenic way. Immunostaining images show that the presence of topological defects, i.e., kinks—due to more frequent fiber crossing—in the case of randomly organized fiber assembly concurs to interfere with proper neurite outgrowth. On the contrary, fully aligned fibers without kinks offer a more efficient contact guidance to direct the orientation of nerve cells along the fibers respect to randomly organized ones, promoting a high elongation of neurites at 7 days and the formation of bipolar extensions. So, this confirms that the topological cue of fully alignment of fibers elicits a favorable environment for nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97:163–79.

    Article  Google Scholar 

  2. Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol. 2009;10:34–43.

    Article  Google Scholar 

  3. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008;26:2921–7.

    Article  Google Scholar 

  4. Guaccio A, Guarino V, Alvarez-Perez MA, Cirillo V, Netti PA, Ambrosio L. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences. Biotechnol Bioeng. 2011;108(8):1965–76.

    Article  Google Scholar 

  5. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135–8.

    Article  Google Scholar 

  6. Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett. 2005;5:913–6.

    Article  Google Scholar 

  7. Guarino V, Raucci MG, Ambrosio L. Micro/Nanotexturing and bioactivation strategies to design composite scaffolds and ECM-like analogues. Macromol Symp. 2013;331–332:65–70.

    Article  Google Scholar 

  8. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603–21.

    Article  Google Scholar 

  9. Dayal P, Liu J, Kumar S, Kyu T. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules. 2007;40(21):7689–94.

    Article  Google Scholar 

  10. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  Google Scholar 

  11. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29:653–61.

    Article  Google Scholar 

  12. Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 2005;11:1149–58.

    Article  Google Scholar 

  13. Riboldi SA, Sadr N, Pigini L, Neuenschwander P, Simonet M, Mognol P, Sampaolesi M, Cossu G, Mantero S. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J Biomed Mater Res A. 2008;84:1094–101.

    Article  Google Scholar 

  14. Rockwood DN, Akins RE Jr, Parrag IC, Woodhouse KA. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials. 2008;29:4783–91.

    Article  Google Scholar 

  15. Arras MLM, Grasl C, Bergmeister H, Schima H. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater. 2012;13:035008 (8 pp).

    Google Scholar 

  16. Prabhakaran MP, Vatankhah E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng. 2013;110(10):2775–84.

    Article  Google Scholar 

  17. Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules. 2010;11:2238–46.

    Article  Google Scholar 

  18. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.

    Article  Google Scholar 

  19. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B. 2006;78B:283–90.

    Article  Google Scholar 

  20. Li WJ, Cooper JA Jr, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(a-hydroxyester)-based nanofibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.

    Article  Google Scholar 

  21. Brandsch R, Bar G, Whangbo MH. On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy. Langmuir. 1997;13:6349–53.

    Article  Google Scholar 

  22. Han N, Johnson JK, Bradley PA, Parikh KS, Lannutti JJ, Winter JO. Cell attachment to hydrogel–electrospun fiber mat composite materials. J Funct Biomater. 2012;3:497–513.

    Article  Google Scholar 

  23. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  Google Scholar 

  24. Guarino V, Alvarez-Perez MA, Cirillo V, Ambrosio L. hMSC interaction with PCL and PCL/gelatin platforms: a comparative study on films and electrospun membranes. J Bioact Compat Polym. 2011;26(2):144–60.

    Article  Google Scholar 

  25. Schneider T, Kohl B, Sauter T, Kratz K, Lendlein A, Ertel W, Schulze-Tanzil G. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes. Clin Hemorheol Microcirc. 2012;52:325–36.

    Google Scholar 

  26. Rydmark M. Nodal axon diameter correlates linearly with intermodal axon diameter in spinal roots of the cat. Neurosci Lett. 1981;24:247–50.

    Article  Google Scholar 

  27. Schnell E, Klinkhammer K, Balzer S, Brook G, Kleeb D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterial. 2007;28:3012–25.

    Article  Google Scholar 

  28. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 2010;6:2970–8.

    Article  Google Scholar 

  29. Xie J, MacEwan MR, Li X, Sakiyama-Elbert SE, Xia Y. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano. 2009;3:1151–9.

    Article  Google Scholar 

  30. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A. 2007;83:636–45.

    Article  Google Scholar 

  31. Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, Gilbert RJ. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration. J Neural Eng. 2009;6:016001.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by MERIT n. RBNE08HM7T and FIRB-NEWTON RBAP11BYNP. Scanning Electron Microscopy was supported by the Transmission and Scanning Electron Microscopy Labs (LAMEST) of the National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Guarino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirillo, V., Guarino, V., Alvarez-Perez, M.A. et al. Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance. J Mater Sci: Mater Med 25, 2323–2332 (2014). https://doi.org/10.1007/s10856-014-5214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5214-4

Keywords

Navigation