Skip to main content

Advertisement

Log in

The effect of ZrO2 and TiO2 on solubility and strength of apatite–mullite glass–ceramics for dental applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effect of ZrO2 and TiO2 on the chemical and mechanical properties of apatite–mullite glass–ceramics was investigated after sample preparation according to the ISO (2768:2008) recommendations for dental ceramics. All materials were characterized using differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. X-ray fluorescence spectroscopy was used to determine the concentrations of elements present in all materials produced. The chemical solubility test and the biaxial flexural strength (BFS) test were then carried out on all the samples. The best solubility value of 242 ± 61 μg/cm2 was obtained when HG1T was heat-treated for 1 h at the glass transition temperature plus 20 °C (Tg + 20 °C) followed by 5 h at 1200 °C. The highest BFS value of 174 ± 38 MPa was achieved when HG1Z and HG1Z+T were heat-treated for 1 h at the Tg + 20 °C followed by 7 h at 1200 °C. The present study has demonstrated that the addition of TiO2 to the reference composition showed promise in both the glass and heat-treated samples. However, ZrO2 is an effective agent for developing the solubility or the mechanical properties of an apatite–mullite glass–ceramic separately but does not improve the solubility and the BFS simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seghi RF, Daher T, Caputi A. A relative flexural strength of dental restorative ceramic. J Dent Mater. 1990;6:181–4.

    Article  Google Scholar 

  2. Anusavice KJ. Recent development in restorative dental ceramics. J Am Dent Assoc. 1993;124:72–8.

    Google Scholar 

  3. Hondrum SO. A review of strength properties of dental ceramic. J Pros Dent. 1992;67:859–65.

    Google Scholar 

  4. Holand W, Rheinberger V, Apel E. van’t Hoen C, holand M, Dommann A, Obrecht M, Mauth C and Graf-Hausner U, Clinical applications of glass–ceramics in dentistry. J Mater Sci. 2006;17:1037–42.

    Google Scholar 

  5. Huang CM, Kuo DH. KimYJ and Kriven WM, Phase-stability of chemically derived enstatile (MgSiO3) powders. J Am Ceram Soc. 1994;77:2625–31.

    Article  Google Scholar 

  6. Kelly JR. Ceramics in restorative and prosthetic dentistry. Annu Rev Mater Sci. 1997;27:443–68.

    Article  Google Scholar 

  7. Anusavice K. Phillip’s science dental materials. Eleventh ed: St Louis, Missouri Saunders; 2003.

    Google Scholar 

  8. Johnson A, Sharref M, Walsh JM, Hatton PV, van Noort R, Hill R. The effect of casting conditions on the biaxial flexural strength of glass–ceramic materials. J Dent Mater. 1998;14:412–6.

    Article  Google Scholar 

  9. Fathi HM, The effect of CaF2 on properties of an apatite–mullite glass–ceramic material. MPhil Thesis, 2004.

  10. Hill R, Wood D. Apatite–mullite glass–ceramics. J Mater Sci. 1995;6:311–8.

    Google Scholar 

  11. Fathi H, Johnson A, van Noort R, Ward J, Brook I. The effect of calcium florid (CaF2) on the chemical solubility of an apatite–mullite glass–ceramic material. J Dent Mater. 2005;21:551–6.

    Article  Google Scholar 

  12. Fathi H, Johnson A, van Noort R, Ward J. The influence of calcium fluoride (CaF2) on biaxial flexural strength of apatite–mullite glass–ceramic materials. J Dent Mater. 2005;21:846–51.

    Article  Google Scholar 

  13. Gorman CM, Hill RG. Heat-pressed ionomer glass–ceramics. Part I: an investigation of flow and microstructure. Dent Mater. 2003;19:320–6.

    Article  Google Scholar 

  14. Holland W, Rheinberger V, Wegner S, Frank M. Needle-like apatite–leucite glass–ceramic as a base material for the veneering of metal restorations in dentistry. J Mater Sci Mater Med. 2000;11:11–7.

    Article  Google Scholar 

  15. Montazeri L, Javadpour J, Shokrgozar MA, Bonakdar S, Javadian S. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders. Biomed Mater. 2010;5:1–8.

    Article  Google Scholar 

  16. Dental ceramic. British Standard BS EN ISO, 6872:2008.

  17. Marghussian VK, Mesgar A, Sheikh M. Effects of compositions on crystallization behaviour and mechanical properties of bioactive glasss-ceramics in the MgO–CaO–SiO2–P2O5 system. J Ceram Int. 2000;26:415–20.

    Article  Google Scholar 

  18. Höche T, Habelitz S, Khodos I. Origin of unusual fluorophlogopite morphology in mica glass-ceramics of the system SiO2–Al2O3–MgO–K2O–NaO, Na2OF2. J Crystal Growth. 1998;192:185–95.

    Article  Google Scholar 

  19. Chawla KK. Ceramic matrix composites. 2nd ed. (illustrated). New York: Springer; 2003.

  20. McMillan PW. Glass–ceramics. 2nd ed. London: Academic Press; 1979.

    Google Scholar 

  21. Bach H. Low thermal expansion glass-ceramics. Germany: Springer; 1995.

    Book  Google Scholar 

  22. Chen WM, Chen K, Deng ZD. Toughening effect of ZrO2 in glass–ceramics. J Mater Sci Eng A. 1998;16:73–6.

    Google Scholar 

  23. Cheng KG, Wan JL, Liang KM. Fabrication of ZrO2 toughened glass–ceramics. J Chinese Ceram Soci. 1998;26:365–8.

    Google Scholar 

  24. Barry TI, Clinton D, Lay L. Crystallization of glasses based on eutectic compositions in the system Li2O–A12O3–SiO2. J Mater Sci. 1970;5:117–21.

    Article  Google Scholar 

  25. Strukelj E, Neuville D, Roskosz M, Richet P. The effect of Ti and Zr nucleating agents on crystallization mechanisms in CaO–Al2O3–SiO2 supercooled liquids. MPM-06 melts and glasses in mineralogy and petrology. Oslo: International Geological Congress; 2008.

    Google Scholar 

  26. Stewart DR. TiO2 and ZrO2 as nucleants in a lithia aluminosilicate glass–ceramic. In: Hench LL, Freiman SW, editors. Advances in nucleating and crystallization in glasses. Symposium of the glass division of the American Ceramic Society; 1971.

  27. Beall GH, McNally RN. Crystallization of fusion cast ceramics and glass–ceramics. J Mater Sci. 1979;14(11):2596–604.

    Article  Google Scholar 

  28. Shelby JE. Introduction to glass science and technology. 2nd ed. (illustrated). London: Royal Society of Chemistry; 2005.

  29. Li-ping YU, Han-ning XIAO, Peng-fei HU. Effect of nucleating agents on microstructure and mechanical properties of SiO2–Al2O3–ZrO2 glass–ceramics. J Cent South Univ Technol. 2005;12:507–10.

    Article  Google Scholar 

  30. Stanton KT, Hill RG. Crystallisation in apatite–mullite glass–ceramics as a function of fluorine content. J Cryst Growth. 2005;275:e2061–8.

    Article  Google Scholar 

  31. Gormana CM, Hill RG. Heat-pressed ionomer glass–ceramics. Part II. Mechanical property evaluation. Dent Mater. 2004;20:252–61.

    Article  Google Scholar 

  32. Piddock V, Marquis PM, Wilson HT. Comparison of the strengths of aluminous porcelain fired on to platinum and palladium foils. J Oral Rehabil. 1986;13:31–7.

    Article  Google Scholar 

  33. Hill RG, Patel M, Wood DJ. Preliminary studies on castable apatite–mullite glass–ceramics. In: Bon”eld W, Hastings GW, Tanner KE, Tanner KE, editors. Bioceramics. 4th ed. London: Butterworth–Heinemann; 1991. p. 79–86.

    Chapter  Google Scholar 

  34. Dental ceramic. British Standard BS EN ISO, 3696:1999.

  35. Eftekhari Yekta B, Alizadeh P, Rezazadeh L. Synthesis of glass–ceramic glazes in the ZnO–Al2O3–SiO2–ZrO2 system. J. Eur. Ceram. Soc. 2007;27:2311–5.

    Article  Google Scholar 

  36. Sung YM, Ahn JW. Sintering and crystallization of off-stoichiometric BaO–Al2O3–2SiO2 glasses. J Mater Sci. 2000;35:4913–8.

    Article  Google Scholar 

  37. Becher PF, Lance MJ, Ferber MK, Hoffmann MJ, Satet RL. The influence of Mg substitution for Al on the properties of SiMeRE oxynitride glasses. J Non-Cryst Solids. 2004;333:124–8.

    Article  Google Scholar 

  38. Mollazadeh S, Eftekhari B. Yekta, J. Javadpour, A. Yusefi and T.S. Jafarzadeh, The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite–mullite glass–ceramics. J Non-Cryst Solids. 2013;361:70–7.

    Article  Google Scholar 

  39. Takamori T, Roy R. J Am Ceram Soc. 1973;56(12):639–44.

    Article  Google Scholar 

  40. Scowcroft BA, Padgett GC. Trans. Br. Ceram. Soc. 1973;1:11–4.

    Google Scholar 

  41. Gayathri Devi AV, Rajendran V, Rajendran N. Structure, solubility and bioactivity in TiO2 doped phosphate-based bioglasses and glass–ceramics. Mater Chem Physics. 2010;124:312–8.

    Article  Google Scholar 

  42. Chan JCC, Ohnsorge R, Meise-Gresch K, Eckert H, Holland W, Rheinberger V. Apatite crystallization in an aluminosilicate glass matrix: mechanistic studies by X-ray powder diffraction, thermal analysis, and multinuclear solid-state NMR spectroscopy. Chem Mater. 2001;13:4198–206.

    Article  Google Scholar 

  43. Holland W, Rheinberger V. Dental glass–ceramics. In: Kokubo T, editor. Bioceramics and their clinical application. Cambridge: Woodhead Publishing; 2008. p. 548–68.

    Chapter  Google Scholar 

  44. Holand W, Frank M, Rheinberger V. Surface crystallization of leucite in glass. J Non-Cryst Solids. 1995;180:292–307.

    Article  Google Scholar 

  45. Muller R, Abu-Hilal LA, Reinisch S, Holand W. Coarsening of needle-shaped apatite crystals in SiO2·Al2O3·Na2O·K2O·CaO·P2O5·F glass. J Mater Sci. 1999;34:65–9.

    Article  Google Scholar 

  46. Holland W, Beall GH. Glass–ceramic technology. 2nd ed. Hoboken: The American Ceramic Society, Wiley; 2012. p. 10–60.

    Google Scholar 

  47. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. Singapore: Wiley; 2006.

    Google Scholar 

  48. Beall GH, Duke DA. Glass–ceramic technology. In: Uhlmann DR, Kteidl NJ, editors. Glass science and technology, vol. 1. Orlando FL: Academic Press; 1983. p. 404–45.

    Google Scholar 

  49. Galoisy L, Pe′legrin E, Arrio MA, Ildefonse P, Calas G. Evidence for 6-coordinated zirconium in inactive nuclear waste glasses. J Am Ceram Soc. 1999;82(8):2219–24.

    Article  Google Scholar 

  50. Dargaud O, Calas G, Cormier L, Galoisy L, Jousseaume C, Querel G, NewvilleJ L. In situ study of nucleation of zirconia in an MgO–Al2O3–SiO2 glass. J Am Ceram Soc. 2010;93(2):342–4.

    Article  Google Scholar 

  51. Zdaniewski W. DTA and X-ray analysis study of nucleation and crystallization of MgO–Al2O3–SiO2 glasses containing ZrO2, TiO2 and CeO. J Am Ceram Soc. 1975;58(5–6):163–9.

    Article  Google Scholar 

  52. Neilson GF, Smith GL, Weinberg MC. Effect of chloride incorporation on the crystallization of zirconium–barium–lanthanum–aluminum fluoride glass. J Am Ceram Soc. 1985;68(11):629–32.

    Article  Google Scholar 

  53. Plaisier JR, Jansen J, de Graaff RAG, Ijdo DJW. J Solid State Chem. 1995;115:464.

    Article  Google Scholar 

  54. Ilyushin GD, Blatov VA. Acta Cryst. B. 2002;58:198.

    Article  Google Scholar 

  55. Li P, Chen IW, Penner-Hahn JE. X-ray-absorption studies of zirconia polymorphs: I. Characteristic structures. Phys Rev B. 1993;48:10063–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hawa M. Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, H.M., Miller, C., Stokes, C. et al. The effect of ZrO2 and TiO2 on solubility and strength of apatite–mullite glass–ceramics for dental applications. J Mater Sci: Mater Med 25, 583–594 (2014). https://doi.org/10.1007/s10856-013-5096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5096-x

Keywords

Navigation