Skip to main content

Advertisement

Log in

In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

An association between in vitro and in vivo studies has been demonstrated for the first time, using a novel nanohydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube (nHAp/VAMWCNT-O2) nanocomposites. Human osteoblast cell culture and bone defects were used to evaluate the in vitro extracellular matrix (ECM) calcification process and bone regeneration, respectively. The in vitro ECM calcification process of nHAp/VAMWCNT-O2 nanocomposites were investigated using alkaline phosphatase assay. The in vivo biomineralization studies were carried out on bone defects of C57BL/6/JUnib mice. Scanning electron microscopy, micro-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray difractometry analyses confirmed the presence of the nHAp crystals. nHAp/VAMWCNT-O2 nanocomposites induced in vitro calcification of the ECM of human osteoblast cells in culture after only 24 h. Bone regeneration with lamellar bone formation after 9 weeks was found in the in vivo studies. Our findings make these new nanocomposites very attractive for application in bone tissue regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nerem RM. Cellular engineering. Ann Biomed Eng. 1991;19:529–45.

    Article  CAS  Google Scholar 

  2. Griffith LG, Naughton G. Tissue engineering: current challenges and expanding opportunities. Science. 2002;295:1009–14.

    Article  CAS  Google Scholar 

  3. Lanza R, Langer R, Vacanti J. Principles of tissue engineering. 3rd ed. San Diego: Academic Press; 2007.

    Google Scholar 

  4. Sato M, Webster T. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices. 2004;1(1):105–14.

    Article  CAS  Google Scholar 

  5. Sanosh KP, Chu MCH, Balakrishnan A, Lee YJ, Kim TN, Cho SJ. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys. 2009;9(6):1459–62.

    Article  Google Scholar 

  6. Qia HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids. 2003;51(11–12):2213–37.

    Article  Google Scholar 

  7. Aryal S, Bahadur KCR, Dharmaraj N, Kim KW, Kim HY. Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nanomatrix. Scr Mater. 2006;54:131–5.

    Article  CAS  Google Scholar 

  8. Boccaccinia AR, Choa J, Subhania T, Kayab C, Kayac F. Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J Eur Ceram Soc. 2010;30:1115–29.

    Article  Google Scholar 

  9. Hahna B-D, Lee J-M, Park D-S, Choi J–J, Ryua J, Yoon W-H, Lee B-K, Shin D-S, Kim H-E. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5:3205–14.

    Article  Google Scholar 

  10. Najafi H, Nemati ZA, Sadeguian Z. Inclusion of carbon nanotubes in a hydroxyapatite sol–gel matrix. Cer Inter. 2009;35:2987–91.

    Article  CAS  Google Scholar 

  11. Lobo AO, Corat MAF, Ramos SC, Matsushima JT, Granato AEC. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Langmuir. 2010;26(23):18308–14.

    Article  CAS  Google Scholar 

  12. Manso M, Jiménez C, Morant C, Herrero P, Martínez-Duart JM. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials. 2000;21:1755–61.

    Article  CAS  Google Scholar 

  13. Eliaz N, Eliyahu M. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by realtime electrochemical atomic force microscopy. J Biomed Mater Res A. 2007;80:621–34.

    Google Scholar 

  14. Castle JE, et al. Curve-fitting in XPS using extrinsic and intrinsic background structure. J Electron Spectrosc Relat Phenom. 2000;106:65–80.

    Article  CAS  Google Scholar 

  15. Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5(12):4709–13.

    Article  Google Scholar 

  16. Lobo AO, Marciano FR, Regiani I, Ramos SC, Matsushima JT, Corat EJ. Proposed model for growth preference of plate-like nanohydroxyapatite crystals on super hydrophiliccertically aligned carbon nanotubes by electrode position. Theor Chem Acc. 2011;130:1071–82.

    Article  CAS  Google Scholar 

  17. Taube F, Ylmén R, Shchukarev A, Nietzsche S, Norén JG. Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J Dent. 2010;38:72–81.

    Article  CAS  Google Scholar 

  18. Mellors RC, Solberg TN. Electron microprobe analysis of human trabecular bone. Clin Orthop Rel Res. 1966;45:157–67.

    CAS  Google Scholar 

  19. Mellors RC, Solberg TN. Huang CY Electron probe microanalysis. I. Calcium and phosphorus in normal human cortical bone. Lab Invest. 1964;13(3):183–95.

    CAS  Google Scholar 

  20. Sun L, Chow LC, Frukhtbeyn SA, Bonevich JE. Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J Res Natl Inst Stand Technol. 2010;115(4):243–55.

    Article  CAS  Google Scholar 

  21. Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol. 2011;15:667–76.

    Article  CAS  Google Scholar 

  22. Elliott JC. Recent studies of apatite and other calcium orthophospates. In: Bres E, Hardouin P, editors. Calcium phosphate materials, fundamentals. Monpellier: Sauramps Medical; 1998. p. 25.

    Google Scholar 

  23. Raikar GN, Ong JL, Lucas LC. Hydroxyapatite characterized by XPS. Surf Sci Spectra. 1997;4(1):9–13.

    Article  Google Scholar 

  24. Lou L, et al. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS). Appl Surf Sci. 2008;254:6706–9.

    Article  CAS  Google Scholar 

  25. Chusuei CC, Goodman DW, Van Stipdonk MJ, Justes DR, Schweikert EA. Calcium phosphate identification using XPS and time-of-flight cluster SIMS. Anal Chem. 1997;71:149–53.

    Article  Google Scholar 

  26. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992;7:683–92.

    Article  CAS  Google Scholar 

  27. Ashton BA, Abdullah F, Cave J, Williamson M, Sykes BC, Couch M, Poser JW. Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow: preliminary assessment of their osteogenicity. Bone. 1985;6:313–9.

    Article  CAS  Google Scholar 

  28. Balani K, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 2007;28(4):618–24.

    Article  CAS  Google Scholar 

  29. Lahiri D, Benaduce AP, Rouzaud F, Solomon J, Keshri AK, Kos L, Agarwal A. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating. J Biomed Mater Res A. 2011;96(1):1–12.

    Google Scholar 

  30. Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK, Shin DS, Kim HE. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5(8):3206–14.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (2011/17877-7), (2011/20345-7), CAPES and FVE for financial support, and to everyone form Laboratory of Biomedical Nanotechnology for all support in the procedures. Special thanks to Priscila Leite for scanning electron microscopy images and Alene Alder-Rangel for English revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Oliveira Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, A.O., Siqueira, I.A.W.B., das Neves, M.F. et al. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. J Mater Sci: Mater Med 24, 1723–1732 (2013). https://doi.org/10.1007/s10856-013-4929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4929-y

Keywords

Navigation