Skip to main content
Log in

Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The subretinal transplantation of retinal pigment epithelial cells (RPE cells) grown on polymeric supports may have interest in retinal diseases affecting RPE cells. In this study, montmorillonite based polyurethane nanocomposite (PU-NC) was investigated as substrate for human RPE cell growth (ARPE-19 cells). The ARPE-19 cells were seeded on the PU-NC, and cell viability, proliferation and differentiation were investigated. The results indicated that ARPE-19 cells attached, proliferated onto the PU-NC, and expressed occludin. The in vivo ocular biocompatibility of the PU-NC was assessed by using the HET-CAM; and through its implantation under the retina. The direct application of the nanocomposite onto the CAM did not compromise the vascular tissue in the CAM surface, suggesting no ocular irritancy of the PU-NC film. The nanocomposite did not elicit any inflammatory response when implanted into the eye of rats. The PU-NC may have potential application as a substrate for RPE cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srivastava GK. Elastin-like recombinamers as substrates for retinal pigment epithelial cell growth. J Biomed Mater Res Part A. 2011;97A:243.

    Article  CAS  Google Scholar 

  2. Klein R. The epidemiology of age related macular degeneration. Am J Ophthalmol. 2004;137:486–95.

    Article  Google Scholar 

  3. Veritti D. Neovascular age-related macular degeneration. Ophthalmologica. 2012;227(suppl 1):11.

    Article  CAS  Google Scholar 

  4. Lu JT. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials. 2007;28(8):1486–94.

    Article  CAS  Google Scholar 

  5. Lu B. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices. 2012;. doi:10.1007/s10544-012-9645-8.

    Google Scholar 

  6. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004;122:598–614.

    Article  Google Scholar 

  7. Tezel TH. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol. 2007;143:584–5.

    Article  Google Scholar 

  8. Pieramici DJ. Occult with no classic subfoveal choroidal neovascular lesions in age-related macular degeneration: clinically relevant natural history information in larger lesions with good vision from the Veteporfin in photodynamic therapy (VIP) Trial: VIP report no. 4. Arch Ophthalmol. 2006;124:660–4.

    Article  Google Scholar 

  9. Stevenson MR. Visual functioning and quality of life in the subfoveal radiotherapy study (SFRADS): SFRADS report no. 2. Br J Ophthalmol. 2005;89:1045–51.

    Article  CAS  Google Scholar 

  10. Mruthyunjaya P. Impact of fluorescein angiographic characteristics of macular lesions on outcomes after macular translocation 360 degrees surgery in eyes with age-related macular degeneration. Retina. 2005;25:597–607.

    Article  Google Scholar 

  11. Binder S. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol. 2002;133:215–25.

    Article  Google Scholar 

  12. Abe T. Autologous iris pigment epithelial cell transplantation in monkey subretinal region. Curr Eye Res. 2000;20:268–75.

    Article  CAS  Google Scholar 

  13. Wongpichedchai S. Comparison of external and internal approaches for transplantation of autologous retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33:3341–2.

    CAS  Google Scholar 

  14. Lane C. Transplantation of retinal pigment epithelium using a pars plana approach. Eye. 1989;3:27–32.

    Article  Google Scholar 

  15. Hynes SR. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248(6):763–8.

    Article  Google Scholar 

  16. Da Silva GR. Polyurethanes as supports for human retinal pigment epithelium cell growth. Int J Artif Organs. 2011;34(2):198–9.

    Article  Google Scholar 

  17. Binder S. Transplantation of RPE in AMD. Prog Retin Eye Res. 2007;26:516–54.

    Article  Google Scholar 

  18. Fitzpatrick SD. PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules. 2010;11:2261–7.

    Article  CAS  Google Scholar 

  19. McUsic AC. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials. 2012;33:1396–405.

    Article  CAS  Google Scholar 

  20. Thomson HAJ. Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation. Br J Ophthalmol. 2011;95:563–8.

    Article  Google Scholar 

  21. Krishna Y. Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. J Biomed Mater Res A. 2007;80(3):669–78.

    Google Scholar 

  22. Williams RL. Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation. J Mater Sci Mater Med. 2005;16:1087–92.

    Article  CAS  Google Scholar 

  23. Pinto FCH. Montmorillonite clay-based polyurethane nanocomposite as local triamcinolone acetonide delivery system. J Nanomaterials. 2011;. doi:10.1155/2011/528628.

    Google Scholar 

  24. Da Silva GR. Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stab. 2010;95:491–9.

    Article  Google Scholar 

  25. Da Silva GR. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J Drug Target. 2009;17(5):374–83.

    Article  Google Scholar 

  26. Silva GR. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Mater Sci Eng C. 2011;31:414–22.

    Article  Google Scholar 

  27. Gupta H. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–33.

    Article  CAS  Google Scholar 

  28. Korte GE. Reorganization of actin microfilaments and microtubules in regenerating retinal pigment epithelium. Exp Eye Res. 1995;61:189–203.

    Article  CAS  Google Scholar 

  29. Ramakrishna S. Biomedical applications of polymer-composite materials: a review. Comp Sci Technol. 2001;61(9):1189–94.

    Article  CAS  Google Scholar 

  30. Ratner B, Hoffman A, Schoen F, Lemons J. An introduction to materials in medicine. Biomaterials Science: Academic Press; 1996.

    Google Scholar 

  31. Thomson RC. Manufacture and characterization of poly(α-hydroxy ester) thin films as temporary substrates for retinal pigment epithelium cells. Biomaterials. 1996;17:321–7.

    Article  CAS  Google Scholar 

  32. Burke JM. Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res. 1996;62:63–73.

    Article  CAS  Google Scholar 

  33. Zarbin MA. Analysis of retinal pigment epithelium integrin expression and adhesion to aged submacular human Bruch’s membrane. Trans Am Ophthalmol Soc. 2003;101:499.

    Google Scholar 

  34. Lund RD. Retinal transplantation: progress and problems in clinical application. J Leukoc Biol. 2003;74:151.

    Article  CAS  Google Scholar 

  35. Kearns V. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration. J Mater Sci Mater Med. 2012;. doi:10.1007/s10856-012-4675-6.

    Google Scholar 

  36. Alge CS. Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res. 2006;5:862–8.

    Article  CAS  Google Scholar 

  37. Gullapalli VK. Culture-induced increase in alpha integrin subunit expression in retinal pigment epithelium is important for improved resurfacing of aged human Bruch’s membrane. Exp Eye Res. 2008;86:189.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the following institutions: CAPES/MEC (Brazil), CNPq/MCT (Brazil) and FAPEMIG (Minas Gerais—Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Rodrigues Da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Silva, G.R., Da Silva-Cunha, A., Vieira, L.C. et al. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. J Mater Sci: Mater Med 24, 1309–1317 (2013). https://doi.org/10.1007/s10856-013-4885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4885-6

Keywords

Navigation