Skip to main content

Advertisement

Log in

Biomedical evaluation of a novel nitrogen oxides releasing wound dressing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chronic wounds are a major cause for both suffering and economical losses. Management of chronic non-healing wounds requires multipronged approach. They are polymicrobial and agonizing for the patient due to associated pain. Moist dressing providing antimicrobial action is a highly desirable chronic wound management option. Here we report a hydrogel based dressing that possesses the antimicrobial properties of acidified sodium nitrite and the homeostatic property of a hydrogel. The dressing was developed by combining citric acid cross-linked cotton gauze and sodium nitrite loaded gelatin. The cotton gauze was cross-linked with citric acid by pad-dry-curing in presence of nano-titania catalyst. The cotton gauze-gelatin hydrogel combination was gamma-irradiated and freeze-dried. At the time of application, the freeze-dried dressing is wetted by sodium nitrite solution. The dressing has a fluid uptake ability of 90 % (w/v) and the water vapour evaporation rate was estimated to be 2,809 ± 20 g/m2/day. The dressing showed significant antimicrobial activity against both planktonic and biofilm forms and was effective during consecutive re-uses. Cytotoxicity study showed inhibition of fibroblasts, but to a lesser extent than clinically administered concentrations of antiseptic like povidone iodine. Storage at 37 °C over a 3 month period resulted in no significant loss of its antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markova A, Mostow EN. US Skin disease assessment: ulcer and wound care. Dermatol Clin. 2012;30(1):107–11.

    Article  CAS  Google Scholar 

  2. Ammons MCB. Anti-biofilm strategies and the need for innovations in wound care. Recent Pat Anti-infect Drug Discov. 2010;5:10–7.

    Article  CAS  Google Scholar 

  3. Fonseca AP. Biofilms in wounds: an unsolved problem? EWMA J. 2011;11:10–23.

    Google Scholar 

  4. Hampton S, Collins F. Tissue viability a comprehensive guide. London: Whurr Publications; 2007.

    Google Scholar 

  5. White RJ, Cutting K, Kingsley A. Topical antimicrobials in the control of wound bioburden. Ostomy Wound Manag. 2006;52(8):26–58.

    Google Scholar 

  6. Bechtle M, Chen S, Efferth T. Neglected diseases caused by bacterial infections. Curr Med Chem. 2010;19:42–60.

    Article  Google Scholar 

  7. Ghaffari A, Miller CC, McMullin B, Ghahary A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide. 2006;14(1):21–9.

    Article  CAS  Google Scholar 

  8. Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–67.

    Article  CAS  Google Scholar 

  9. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.

    Article  CAS  Google Scholar 

  10. Sternberg C, Christensen BB, Johansen T, Nielsen AT, Andersen JB, Givskov M. Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol. 1999;65(9):4108–17.

    CAS  Google Scholar 

  11. Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med. 2011;51(3):576–93.

    Article  CAS  Google Scholar 

  12. Phillips R, Kuijper S, Benjamin N, Wansbrough-Jones M, Wilks M, Kolk AHJ. In vitro killing of Mycobacterium ulcerans by acidified nitrite. Antimicrob Agents Chemother. 2004;48(8):3130–2.

    Article  CAS  Google Scholar 

  13. Phillips R, Adjei O, Lucas S, Benjamin N, Wansbrough-Jones M. Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother. 2004;48(8):2866–70.

    Article  CAS  Google Scholar 

  14. Martinez-Ruiz A, Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res. 2004;62:43–52.

    Article  CAS  Google Scholar 

  15. Fang FC. Perspectives series: host-pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Investig. 1997;99(12):2818–25.

    Article  CAS  Google Scholar 

  16. Ormerod AD, White MI, Shah SA, Benjamin N. Molluscum contagiosum effectively treated with a topical acidified nitrite, nitric oxide liberating cream. Braz J Dermatol. 1999;141(6):1051–3.

    Article  CAS  Google Scholar 

  17. Weller R, Ormerod AD, Hobson RP, Benjamin NJ. A randomized trial of acidified nitrite cream in the treatment of tinea pedis. J Am Acad Dermatol. 1998;38(4):559–63.

    Article  CAS  Google Scholar 

  18. Flanagan M. Wound management. Philadelphia: Elsevier Health Sciences; 1997.

    Google Scholar 

  19. Fleck CA. Wound pain: assessment and management. Wound Care Canada. 2007;5(1):10–7.

    Google Scholar 

  20. Nazari A, Montazer M, Rashidi A, Yazdanshenas M, Anary-Abbasinejad M. Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature. Appl Catal A. 2009;371(1–2):10–6.

    CAS  Google Scholar 

  21. Quinn KJ, Courtney JM, Evans JH, Gaylor JDS, Reid WH. Principles of burn dressings. Biomaterials. 1985;6(6):369–77.

    Article  CAS  Google Scholar 

  22. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26(32):6335–42.

    Article  CAS  Google Scholar 

  23. Phillips R, Adjei O, Lucas S, Benjamin N, Wansbrough-Jones M. Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother. 2004;48(8):2866–70.

    Article  CAS  Google Scholar 

  24. Kim IY, Yoo MK, Seo JH, Park SS, Na HS, Lee HC, et al. Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm. 2007;341(1–2):35–43.

    Article  CAS  Google Scholar 

  25. Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007;450(7168):411–4.

    Article  CAS  Google Scholar 

  26. Trotonda MP, Manna AC, Cheung AL, Lasa I, Penadés JR. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol. 2005;187(16):5790–8.

    Article  CAS  Google Scholar 

  27. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30(14):2782–9.

    Article  CAS  Google Scholar 

  28. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233(2):134–44.

    Article  Google Scholar 

  29. Anyim M, Benjamin N, Wilks M. Acidified nitrite as a potential antifungal agent. Int J Antimicrob Agents. 2005;26(1):85–7.

    Article  CAS  Google Scholar 

  30. Carlsson S, Govoni M, Wiklund NP, Weitzberg E, Lundberg JO. In vitro evaluation of a new treatment for urinary tract infections caused by nitrate-reducing bacteria. Antimicrob Agents Chemother. 2003;47(12):3713–8.

    Article  CAS  Google Scholar 

  31. Lamke LO, Nilsson GE, Reithner HL. The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns. 1977;3(3):159–65.

    Article  Google Scholar 

  32. Kickhöfen B, Wokalek H, Scheel D, Ruh H. Chemical and physical properties of a hydrogel wound dressing. Biomaterials. 1986;7(1):67–72.

    Article  Google Scholar 

  33. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One. 2011;6(11):e27317. doi:10.1371/journal.pone.0027317.

    Article  CAS  Google Scholar 

  34. Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol. 2010;28(5):519–26.

    Article  Google Scholar 

  35. Lexchin J. Promoting resistance? Essential Drugs Monitor. 2000;28&29:11.

  36. Dryden M, Johnson AP, Ashiru-Oredope D, Sharland M. Using antibiotics responsibly: right drug, right time, right dose, right duration. J Antimicrob Chemother. 2011;66(11):2441–3.

    Article  CAS  Google Scholar 

  37. Davis SC, Martinez L, Kirsner R. The diabetic foot: the importance of biofilms and wound bed preparation. Curr Diab Rep. 2006;6(6):439S–45S.

    Article  Google Scholar 

  38. Anthony WS. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 2005;57(10):1539–50.

    Article  Google Scholar 

  39. Werner S, Krieg T, Smola H. Keratinocyte–fibroblast interactions in wound healing. J Invest Dermatol. 2007;127(5):998–1008.

    Article  CAS  Google Scholar 

  40. Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. Braz J Dermatol. 2007;156(6):1149–55.

    Article  CAS  Google Scholar 

  41. Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays. Int J Pharm. 2005;288(2):369–76.

    Article  CAS  Google Scholar 

  42. Pyo HC, Kim YK, Whang KU, Park YL, Eun HC. A comparative study of cytotoxicity of topical antimicrobials to cultured human keratinocytes and fibroblasts. Korean J Dermatol. 1995;33(5):895–906.

    Google Scholar 

  43. Du Toit DF, Page BJ. An in vitro evaluation of the cell toxicity of honey and silver dressings. J Wound Care. 2009;18(9):383–9.

    Google Scholar 

  44. Lam PK, Chan ES, Ho WS, Liew CT. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Braz J Biomed Sci. 2004;61(3):125–7.

    CAS  Google Scholar 

  45. Liu X, Zhu YK, Wang H, Kohyama T, Wen F, Rennard SI. Effect of nitric oxide donors on human lung fibroblast proliferation in vitro. Chest. 2001;120(1 suppl):S13–4.

    Article  Google Scholar 

  46. Espey DK, Djomand G, Diomande I, Dosso M, Saki MZ, Kanga J-M, et al. Pilot study of treatment of Buruli ulcer with rifampin and dapsone. Int J Infect Dis. 2002;6(1):60–5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their colleague Dr. Pushpalata Rajesh for her help in the irradiation facility. We are also thankful to Dr. Iñigo Lasa, Instituto De Agrobiotecnologia, Universidad Publica de Navarra/Consejo Superior de Investigaciones Científicas, Campus de Arrosadia, Spain for providing us Staphylococcus aureus strain and Prof. Stephen P. Diggle, Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham, UK for providing us with Pseudomonas aeruginosa strain. The customer service cell, Biomedical Technology Wing at Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum for the cell-cytotoxicity analysis and Evonik Industries, Germany for the nano-titania catalyst are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vayalam P. Venugopalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dave, R.N., Joshi, H.M. & Venugopalan, V.P. Biomedical evaluation of a novel nitrogen oxides releasing wound dressing. J Mater Sci: Mater Med 23, 3097–3106 (2012). https://doi.org/10.1007/s10856-012-4766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4766-4

Keywords

Navigation