Skip to main content

Advertisement

Log in

Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new electrospinning apparatus was developed to generate nanofibrous materials with improved organizational control. The system functions by oscillating the deposition signal (ODS) of multiple collectors, allowing significantly improved nanofiber control by manipulating the electric field which drives the electrospinning process. Other electrospinning techniques designed to impart deposited fiber organizational control, such as rotating mandrels or parallel collector systems, do not generate seamless constructs with high quality alignment in sizes large enough for medical devices. In contrast, the ODS collection system produces deposited fiber networks with highly pure alignment in a variety of forms and sizes, including flat (8 × 8 cm2), tubular (1.3 cm diameter), or rope-like microbundle (45 μm diameter) samples. Additionally, the mechanism of our technique allows for scale-up beyond these dimensions. The ODS collection system produced 81.6 % of fibers aligned within 5° of the axial direction, nearly a four-fold improvement over the rotating mandrel technique. The meshes produced from the 9 % (w/v) fibroin/PEO blend demonstrated significant mechanical anisotropy due to the fiber alignment. In 37 °C PBS, aligned samples produced an ultimate tensile strength of 16.47 ± 1.18 MPa, a Young’s modulus of 37.33 MPa, and a yield strength of 7.79 ± 1.13 MPa. The material was 300 % stiffer when extended in the direction of fiber alignment and required 20 times the amount of force to be deformed, compared to aligned meshes extended perpendicular to the fiber direction. The ODS technique could be applied to any electrospinnable polymer to overcome the more limited uniformity and induced mechanical strain of rotating mandrel techniques, and greatly surpasses the limited length of standard parallel collector techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shenoy S, Bates W, Frisch H, Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer? polymer interaction limit. Polymer. 2005;46:3372–84.

    Article  CAS  Google Scholar 

  2. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NC. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer. 2001;42:8163–70.

    Article  CAS  Google Scholar 

  3. Angammana C, Jayaram SH. The effects of electric field on the multijet electrospinning process and fiber morphology. Ind Appl IEEE. 2011;47:1028–35.

    Article  Google Scholar 

  4. Schreuder-Gibson H, Gibson P, Tsai P, Gupta P, Wilkes G. Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. Int Nonwovens J. 2005;13:39–45.

    Google Scholar 

  5. Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531.

    Article  CAS  Google Scholar 

  6. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001;89:3018.

    Article  CAS  Google Scholar 

  7. Gaumer J, Prasad A, Lee D, Lannutti J. Structure–function relationships and source-to-ground distance in electrospun polycaprolactone. Acta Biomater. 2009;5:1552–61.

    Article  CAS  Google Scholar 

  8. Stachewicz U, Peker I, Tu W, Barber AH. Stress delocalization in crack tolerant electrospun nanofiber networks. ACS Appl Mater Interfaces. 2011;3:1991–6.

    Article  CAS  Google Scholar 

  9. Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C. 2009;29:663–8.

    Article  CAS  Google Scholar 

  10. Saraf A, Lozier G, Haesslein A, Kasper FK, Raphael RM, Baggett LS, Mikos AG. Fabrication of nonwoven coaxial fiber meshes by electrospinning. Tissue Eng C. 2009;15:333–44.

    Article  CAS  Google Scholar 

  11. Thakur RA, Florek CA, Kohn J, Michniak BB. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm. 2008;364:87–93.

    Article  CAS  Google Scholar 

  12. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13:1593–605.

    Article  CAS  Google Scholar 

  13. Zhang X, Wang X, Keshav V, Wang X, Johanas JT, Leisk GG, Kaplan DL. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials. 2009;30:3213–23.

    Article  CAS  Google Scholar 

  14. Sell S A, Francis M P, Garg K, McClure M J, Simpson D G and Bowlin G L. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed. Mater. 2008;3: 045001.

    Google Scholar 

  15. Yoshimatsu K, Ye L, Lindberg J, Chronakis IS. Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron. 2008;23:1208–15.

    Article  CAS  Google Scholar 

  16. Cai Z-X, Mo X-M, Zhang K-H, Fan L-P, Yin A-L, He C-L, Wang H-S. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11:3529–39.

    Article  CAS  Google Scholar 

  17. Kempf M, Miyamura Y, Liu P-Y, Chen AC-H, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32:4782–92.

    Article  CAS  Google Scholar 

  18. Lee H, Yeo M, Ahn S, Kang D-O, Jang CH, Lee H, Park G-M, Kim GH. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J Biomed Mater Res B. 2011;97:263–70.

    Google Scholar 

  19. Ahmad Z, Stride E, Edirisinghe M. Novel preparation of transdermal drug-delivery patches and functional wound healing materials. J Drug Target. 2009;17:724–9.

    Article  CAS  Google Scholar 

  20. Yao L, O’Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B. 2009;90:483–91.

    Google Scholar 

  21. Weber N, Lee Y-S, Shanmugasundaram S, Jaffe M, Arinzeh TL. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 2010;6:3550–6.

    Article  CAS  Google Scholar 

  22. Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ. Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials. 2011;32:1549–59.

    Article  CAS  Google Scholar 

  23. Ma Z, Chen F, Zhu Y-J, Cui T, Liu X-Y. Amorphous calcium phosphate/poly(d, l-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci. 2011;359:371–9.

    Article  CAS  Google Scholar 

  24. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 2007;13:1845–66.

    Article  CAS  Google Scholar 

  25. Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater. 2010;19:193–204.

    CAS  Google Scholar 

  26. Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano. 2010;4:5027–36.

    Article  CAS  Google Scholar 

  27. Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun. 2008;29:1775–92.

    Article  CAS  Google Scholar 

  28. Xie J, Li X, Lipner J, Manning CN, Schwartz AG, Thomopoulos S, Xia Y. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale. 2010;2:923–6.

    Article  CAS  Google Scholar 

  29. Wolfe PS, Madurantakam P, Garg K, Sell S, Beckman MJ, Bowlin GL. Evaluation of thrombogenic potential of electrospun bioresorbable vascular graft materials: acute monocyte tissue factor expression. J Biomed Mater Res A. 2010;92:1321–8.

    Google Scholar 

  30. McClure MJ, Sell S, Simpson DG, Walpoth BH, Bowlin GL. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater. 2010;6:2422–33.

    Article  CAS  Google Scholar 

  31. Wu H, Fan J, Chu C-C, Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med. 2010;21:3207–15.

    Article  CAS  Google Scholar 

  32. Drilling S, Gaumer J, Lannutti J. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. J Biomed Mater Res A. 2009;88:923–34.

    Google Scholar 

  33. Liu X, Chen J, Gilmore KJ, Higgins MJ, Liu Y, Wallace GG. Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styrene-beta-isobutylene-beta-styrene) fiber platforms. J Biomed Mater Res A. 2010;94:1004–11.

    Google Scholar 

  34. Griffin J, Delgado-Rivera R, Meiners S, Uhrich KE. Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system. J Biomed Mater Res A. 2011;97:230–42.

    Google Scholar 

  35. Ahmad Z, Nangrejo M, Edirisinghe M, Stride E, Colombo P, Zhang HB. Engineering a material for biomedical applications with electric field assisted processing. Appl Phys A. 2009;97:31–7.

    Article  CAS  Google Scholar 

  36. Lovett M, Cannizzaro C, Daheron L, Messmer B. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–9.

    Article  CAS  Google Scholar 

  37. Lu S, Wang X, Lu Q, Zhang X, Kluge Ja, Uppal N, Omenetto F, Kaplan DL. Insoluble and flexible silk films containing glycerol. Biomacromolecules. 2010;11:143–50.

    Article  CAS  Google Scholar 

  38. Jin H-J, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;3:1233–9.

    Article  CAS  Google Scholar 

  39. Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. 2009;61:988–1006.

    Article  CAS  Google Scholar 

  40. Jin H. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25:1039–47.

    Article  CAS  Google Scholar 

  41. Wang H, Zhang Y, Shao H, Hu X. Electrospun ultra-fine silk fibroin fibers from aqueous solutions. J Mater Sci. 2005;40:5359–63.

    Article  CAS  Google Scholar 

  42. Wang S, Zhang Y, Wang H, Yin G, Dong Z. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules. 2009;10:2240–4.

    Article  CAS  Google Scholar 

  43. Wei K, Li Y, Kim K-O, Nakagawa Y, Kim B-S, Abe K, Chen G-Q, Kim I-S. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J Biomed Mater Res A. 2011;97:272–80.

    Google Scholar 

  44. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–97.

    Article  CAS  Google Scholar 

  45. Kumar A, Wei M, Barry C, Chen J, Mead J. Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng. 2010;295:701–8.

    Article  CAS  Google Scholar 

  46. Timnak A, Gharebaghi FY, Shariati RP, Bahrami SH, Javadian S, Emami SH, Shokrgozar MA. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J Mater Sci Mater Med. 2011;22:1555–67.

    Article  CAS  Google Scholar 

  47. Nandakumar A, Fernandes H, de Boer J, Moroni L, Habibovic P, van Blitterswijk Ca. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration. Macromol Biosci. 2010;10:1365–73.

    Article  CAS  Google Scholar 

  48. Ramakrishna S. An introduction to electrospinning and nanofibers. Singapore: World Scientific Pub Co Inc.; 2005.

  49. Vaquette C, Cooper-White J. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011;7:2544–57.

    Article  CAS  Google Scholar 

  50. Kundu J, Dewan M, Ghoshal S, Kundu SC. Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices. J Mater Sci Mater Med. 2008;19:2679–89.

    Article  CAS  Google Scholar 

  51. Rajkhowa R, Levin B, Redmond SL, Li LH, Wang L, Kanwar JR, Atlas MD, Wang X. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J Biomed Mater Res A. 2011;97A:37–45.

    Article  CAS  Google Scholar 

  52. Tong H-W, Wang M, Lu WW. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. J Biomater Sci Polym Ed. 2011;23:779–806.

    Article  Google Scholar 

  53. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009;9:2763–8.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by National Science Foundation award CBET-0932456, and partially by NIH awards EY020856 and EB002520, and AFOSR award FA9550-10-1-0172. We thank Dr. Robert White for contributing microscale profilometry measurements, and Dr. Ethan Golden for his assistance in design and fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod R. Jose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose, R.R., Elia, R., Firpo, M.A. et al. Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs. J Mater Sci: Mater Med 23, 2679–2695 (2012). https://doi.org/10.1007/s10856-012-4739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4739-7

Keywords

Navigation