Skip to main content
Log in

Axially aligned electrically conducting biodegradable nanofibers for neural regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Author Correction to this article was published on 13 May 2019

Abstract

In this study, electrically conducting axially aligned nanofibers have developed to provide both electrical and structural cues. Poly(lactide-co-glycolide) (PLGA) with poly(3-hexylthiophene) (PHT) was electrospun into 2D random (196 ± 98 nm) and 3D axially aligned nanofibers (200 ± 80 nm). Electrospun random and aligned PLGA–PHT fibers were characterized for surface morphology, mechanical property, porosity, degradability, and electrical conductivity. The pore size of random PLGA–PHT nanofibers (6.0 ± 3.3 μm) were significantly higher than the aligned (1.9 ± 0.4 μm) (P < 0.05) and the Young’s modulus of aligned scaffold was significantly lower than the random. Aligned nanofibers showed significantly lesser degradation rate and higher electrical conductivity (0.1 × 10−5 S/cm) than random nanofibers (P < 0.05). Results of in vitro cell studies indicate that aligned PLGA–PHT nanofibers have a significant influence on the adhesion and proliferation of Schwann cells and could be potentially used as scaffold for neural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials. 2006;27:3515–8.

    CAS  Google Scholar 

  2. Trumble TE. Peripheral nerve transplantation: the effects of predegenerated grafts and immunosuppression. J Neural Transplant Plast. 1992;3:39–49.

    Article  CAS  Google Scholar 

  3. Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25:4273–8.

    Article  CAS  Google Scholar 

  4. Yu X, Bellamkonda RV. Tissue engineered scaffolds are effective alternatives to autografts in bridging peripheral nerve gaps in rodents. Tissue Eng. 2003;9:421–30.

    Article  CAS  Google Scholar 

  5. Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Hornet MK, Forsythe JS. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. 2007;28:441–9.

    Article  CAS  Google Scholar 

  6. Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials. 2008;29:1601–9.

    Article  CAS  Google Scholar 

  7. Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater. 2002;12:33–7.

    Article  CAS  Google Scholar 

  8. Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci. 2009. doi:10.1186/1423-0127-16-108.

  9. Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, Decorte A, Heymans K, Adriaensen J, Bruining M, Remoortere M, Borghys H, Meert T, Peeters J, Brewster ME. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005;26:1307–15.

    Article  CAS  Google Scholar 

  10. Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800–9.

    Article  CAS  Google Scholar 

  11. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  CAS  Google Scholar 

  12. Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell JE. Molecular cell biology. New York: W.H. Freeman and Company; 2002.

  13. Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules. 2011;12:3156–65.

    Article  CAS  Google Scholar 

  14. Hiep NT, Lee B-T. Electrospinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med. 2010;21:1969–78.

    Article  CAS  Google Scholar 

  15. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on schwann cell maturation. Biomaterials. 2008;29:653–61.

    Article  CAS  Google Scholar 

  16. Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26:5427–32.

    Article  CAS  Google Scholar 

  17. Kim Y-T, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of lone peripheral nerve gaps. Biomaterials. 2008;29:3117–27.

    Article  CAS  Google Scholar 

  18. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials. 2007;28:3012–25.

    Article  CAS  Google Scholar 

  19. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;. doi:10.1088/0957-4484/17/14/R01.

    Google Scholar 

  20. Subramanian A, Krishnan UM, Sethuraman S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed Mater. 2011. doi:10.1088/1748-6041/6/2/025004.

  21. Teo WE, Kotaki M, Mo XM, Ramakrishna S. Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology. 2005. doi:10.1088/0957-4484/16/6/049.

  22. Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials. 2003;24:777–87.

    Article  CAS  Google Scholar 

  23. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatine nanofibers for tissue engineering applications. Biomaterials. 2006;27:2705–15.

    Article  CAS  Google Scholar 

  24. Richardson–Burns SM, Hendricks JL, Foster B, Povlich LK, Kim D, Martin DC. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials. 2007;28:1539–52.

    Article  Google Scholar 

  25. Zhang Z, Rouabhia M, Wang Z, Roberge C, Shi G, Roche P, Li J, Dao LH. Electrically conductive biodegradable polymer composite for nerve regeneration: electrically-stimulated neurite outgrowth and axon regeneration. Artif Org. 2007;31:13–22.

    Article  CAS  Google Scholar 

  26. Patel N, Poo M-M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982;2:483–96.

    CAS  Google Scholar 

  27. Collier JH, Camp JP, Hudson TW, Schmidt CE. Synthesis and characterization of polypyrrole/hyaluronic acid composite biomaterials for tissue engineering. J Biomed Mater Res. 2000;50:574–84.

    Article  CAS  Google Scholar 

  28. Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules. 2006;7:1692–5.

    Article  CAS  Google Scholar 

  29. Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001;22:1055–64.

    Article  CAS  Google Scholar 

  30. Kamalesh S, Tan P, Wang J, Lee T, Kang ET, Wang CH. Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res. 2000;52:467–78.

    Article  CAS  Google Scholar 

  31. Wang CH, Dong YQ, Sengothi K, Tan KL, Kang ET. In vivo tissue response to polyaniline. Synth Met. 1999;102:1313–4.

    Article  CAS  Google Scholar 

  32. Widge AS, Jeffries El M, Cui X, Lagenaur XY, Matsuoka Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectrons. 2007;22:1723–32.

    Article  CAS  Google Scholar 

  33. Otero TF, Cortes MT. Artificial muscles with tactile sensitivity. Adv Mater. 2003;15:279–82.

    Article  CAS  Google Scholar 

  34. Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer. 2006;47:1597–603.

    Article  CAS  Google Scholar 

  35. MacDiarmid AG, Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M. Electrostatically-generated nanofibers of electronic polymers. Synth Met. 2001;119:27–30.

    Article  CAS  Google Scholar 

  36. El-Aufy A. Thesis, Doctor of Philosophy, Drexel University; 2004.

  37. Zussman E, Rittel D, Yarin AL. Failure modes of electrospun nanofibers. Appl Phys Lett. 2003;82:3958–60.

    Article  CAS  Google Scholar 

  38. Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication & characterization of chitosan–gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;94B:264–72.

    CAS  Google Scholar 

  39. Mobarakeh LG, Prabhakaran MP, Morshed M. Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.

    Article  Google Scholar 

  40. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–900.

    Article  CAS  Google Scholar 

  41. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials. 2004;25:2595–602.

    Article  CAS  Google Scholar 

  42. Li WJ, Laurencin CT, Caterson EJ, Tuan R, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.

    Article  CAS  Google Scholar 

  43. Rutkowski GE, Heath CA. Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol Prog. 2002;18:373–9.

    Article  CAS  Google Scholar 

  44. Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med. 2005;16:367–75.

    Article  CAS  Google Scholar 

  45. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  Google Scholar 

  46. Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22:1077–84.

    Article  CAS  Google Scholar 

  47. Gupta D, Venugopal J, Prabhakaran MP, Giri Dev VR, Low S, Choon AT, Ramakrishan S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009;5:2560–9.

    Article  CAS  Google Scholar 

  48. Downton GE, Flores-Luna JL, Judson King C. Mechanism of stickiness in hygroscopic, amorphous powders. Ind Eng Chem Fundamen. 1982;21:447–51.

    Article  CAS  Google Scholar 

  49. Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A. 2009;91:994–1005.

    Google Scholar 

  50. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261–70.

    Article  CAS  Google Scholar 

  51. Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P. In vitro biocompatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial assistance provided by the Nano Mission Counicl, Department of Science & Technology, Govt. of India (SR/S5/NM-07/2006 & SR/NM/PG-16/2007) and the Indian Council for Medical Research (35/12/2009-BMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, A., Krishnan, U.M. & Sethuraman, S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J Mater Sci: Mater Med 23, 1797–1809 (2012). https://doi.org/10.1007/s10856-012-4654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4654-y

Keywords

Navigation