Skip to main content

Advertisement

Log in

A novel antibacterial resin composite for improved dental restoratives

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel furanone-containing antibacterial resin composite has been prepared and evaluated. compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the composites. The modified resin composites showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With 5–30 % addition of the furanone derivative, the composite kept its original CS unchanged but showed a significant antibacterial activity with a 16–68 % reduction in the S. mutans viability. Further, the antibacterial function of the new composite was not affected by human saliva. The aging study indicates that the composite may have a long-lasting antibacterial function. Within the limitations of this study, it appears that the experimental antibacterial resin composite may potentially be developed into a clinically attractive dental restorative due to its high mechanical strength and antibacterial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mjor IA, Dahl JE, Moorhead JE. Placement and replacement of restorations in primary teeth. Acta Odontol Scand. 2002;60:25–8.

    Article  Google Scholar 

  2. Forss H, Widstrom E. Reasons for restorative therapy and longevity of restorations in adults. Acta Odontol Scand. 2004;62:82–6.

    Article  Google Scholar 

  3. Manhart J, Garcia-Godoy F, Hickel R. Direct posterior restorations: clinical results and new developments. Dent Clin North Am. 2002;46:303–39.

    Article  Google Scholar 

  4. Deligeorgi V, Mjor IA, Wilson NH. An overview of reasons for the placement and replacement of restorations. Prim Dent Care. 2001;8:5–11.

    Article  CAS  Google Scholar 

  5. Craig RG, Power JM. Restorative dental materials. 11th ed. St. Louis: Mosby-Year Book, Inc.; 2002. p. 614–8.

    Google Scholar 

  6. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23:343–62.

    Article  CAS  Google Scholar 

  7. Osinaga PW, Grande RH, Ballester RY, Simionato MR, Delgado Rodrigues CR, Muench A. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent Mater. 2003;19:212–7.

    Article  CAS  Google Scholar 

  8. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22:647–52.

    Article  CAS  Google Scholar 

  9. Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral Streptococci. Dent Mater. 1996;12:227–9.

    CAS  Google Scholar 

  10. Syafiuddin T, Hisamitsu H, Toko T, Igarashi T, Goto N, Fujishima A, Miyazaki T. In vitro inhibition of caries around a resin composite restoration containing antibacterial filler. Biomaterials. 1997;18:1051–7.

    Article  CAS  Google Scholar 

  11. Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23:1417–23.

    Article  CAS  Google Scholar 

  12. Thebault P, Taffin de Givenchy E, Levy R, Vandenberghe Y, Guittard F, Geribaldi S. Preparation and antimicrobial behaviour of quaternary ammonium thiol derivatives able to be grafted on metal surfaces. Eur J Med Chem. 2009;44:717–24.

    Article  CAS  Google Scholar 

  13. Imazato S, Russell RR, McCabe JF. Antibacterial activity of MDPB polymer incorporated in dental resin. J Dent. 1995;23:177–81.

    Article  CAS  Google Scholar 

  14. Murata H. Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870–9.

    Article  CAS  Google Scholar 

  15. Guiqian Lu, Dingcai Wu, Ruowen Fu. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React Funct Polym. 2007;67:355–66.

    Article  Google Scholar 

  16. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, non-leaching antibacterial surfaces 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877–82.

    Article  CAS  Google Scholar 

  17. Li F, Chai ZG, Sun MN, Wang F, Ma S, Zhang L, Fang M, Chen JH. Anti-biofilm effect of dental adhesive with cationic monomer. J Dent Res. 2009;88:372–6.

    Article  CAS  Google Scholar 

  18. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent. 2009;37:289–96.

    Article  CAS  Google Scholar 

  19. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006;27:3995–4002.

    Article  CAS  Google Scholar 

  20. Weng Y, Guo X, Chong VJ, Howard L, Gregory RL, Xie D. Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. J Biomater Sci Eng. 2011;4:147–57.

    Article  CAS  Google Scholar 

  21. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RRB. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003;24:3605–9.

    Article  CAS  Google Scholar 

  22. Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater. 2001;17:485–91.

    Article  CAS  Google Scholar 

  23. Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, Fanwick PE, Chang CJ, Mclaughlin JL. New bioactive heptenes from Melodorum fruticosum (Annonaceae). Tetrahedron. 1990;46:5043–54.

    Article  CAS  Google Scholar 

  24. Jones JB, Young JM. Carcinogenicity of lactones III: the reactions of unsaturated 4-lactones with l-cysteine. J Med Chem. 1968;11:1176.

    Article  CAS  Google Scholar 

  25. Lattmann E, Dunn S, Niamsanit S, Sattayasai N. Synthesis and antibacterial activities of 5-hydroxy-4-amino-2(5H)-furanones. Bioorg Med Chem Lett. 2005;15:919–21.

    Article  CAS  Google Scholar 

  26. Xie D, Faddah M, Park J-G. Novel amino acid modified zinc polycarboxylates for improved dental cements. Dent Mater. 2005;21(8):739–48.

    Article  CAS  Google Scholar 

  27. Xie D, Feng F, Chung I-D, Eberhardt AW. A hybrid zinc–calcium–silicate polyalkenoate bone cement. Biomaterials. 2003;24(16):2749–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by NIH challenge grant (RC1) DE020614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, Y., Howard, L., Guo, X. et al. A novel antibacterial resin composite for improved dental restoratives. J Mater Sci: Mater Med 23, 1553–1561 (2012). https://doi.org/10.1007/s10856-012-4629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4629-z

Keywords

Navigation