Skip to main content

Advertisement

Log in

Autologous urothelial cells transplantation onto a prefabricated capsular stent for tissue engineered ureteral reconstruction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, we have fabricated an artificial ureter by transplantation of in vitro-expanded urothelial cells onto an in vivo-prefabricated capsular stent using tissue engineering methods. Spiral poly (l-lactic acid) (PLLA) stents were transplanted into the subcutaneous of Wistar rats for a period of 1, 2 or 3 weeks to induce the formation of connective tissue capsules on their surfaces. The capsular PLLA stents were then decellularized and further recellularized with bladder epithelial cells to fabricate artificial ureters. The results showed that the entrapped cells in all capsules remained continuously proliferation and lined up in continuous layers. In addition, the urothelial cells on the capsular stents with an embedding period of 2 or 3 weeks showed higher proliferative viability compared with the cells on the stents with an embedding time of 1 week (P < 0.05). The results of the study indicated that the prefabricated capsular stents could serve as alternative cell carriers for tissue engineered ureters, especially with embedding time from 2 to 3 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Awadi K, Kehinde EO, Al-Hunayan A, Al-Khayat A. Iatrogenic ureteric injuries: incidence, aetiological factors and the effect of early management on subsequent outcome. Int Urol Nephrol. 2005;37(2):235–41. doi:10.1007/s11255-004-7970-4.

    Article  Google Scholar 

  2. Parpala-Sparman T, Paananen I, Santala M, Ohtonen P, Hellstrom P. Increasing numbers of ureteric injuries after the introduction of laparoscopic surgery. Scand J Urol Nephrol. 2008;42(5):422–7. doi:10.1080/00365590802025857.

    Article  Google Scholar 

  3. Lazica DA, Ubrig B, Brandt AS, Rundstedt FC, Roth S. Ureteral substitution with reconfigured colon: long-term followup. J Urol. 2011;. doi:10.1016/j.juro.2011.09.156.

    Google Scholar 

  4. Neo EN, Zulkifli Z, Sritharan S, Lee BC, Nazri J. Renal autotransplantation after an latrogenic left ureteric injury. Med J Malays. 2007;62(2):164–5.

    CAS  Google Scholar 

  5. Gowda BD, Goldsmith P, Ahmad N. Boari flap vesicocalycostomy: a salvage drainage procedure for complete ureteric stricture and pyelocalyceal fistula. Clin Transpl. 2009;23(1):129–31. doi:10.1111/j.1399-0012.2008.00907.x.

    Article  Google Scholar 

  6. Berzeg S, Baumgart E, Beyersdorff D, Lenk S, Kopka L. Late complication of Boari bladder flap. Eur Radiol. 2003;13(7):1604–7. doi:10.1007/s00330-002-1599-4.

    Article  Google Scholar 

  7. Wu S, Liu Y, Bharadwaj S, Atala A, Zhang Y. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials. 2011;32(5):1317–26. doi:10.1016/j.biomaterials.2010.10.006.

    Article  Google Scholar 

  8. Baumert H, Hekmati M, Dunia I, Mansouri D, Massoud W, Molinie V, et al. Laparoscopy in ureteral engineering: a feasibility study. Eur Urol. 2008;54(5):1154–63. doi:10.1016/j.eururo.2008.01.012.

    Article  Google Scholar 

  9. Baumert H, Mansouri D, Fromont G, Hekmati M, Simon P, Massoud W, et al. Terminal urothelium differentiation of engineered neoureter after in vivo maturation in the “omental bioreactor”. Eur Urol. 2007;52(5):1492–8. doi:10.1016/j.eururo.2007.04.098.

    Article  Google Scholar 

  10. Osman Y, Shokeir A, Gabr M, El-Tabey N, Mohsen T, El-Baz M. Canine ureteral replacement with long acellular matrix tube: is it clinically applicable? J Urol. 2004;172(3):1151–4. doi:10.1097/01.ju.0000134886.44065.00.

    Article  CAS  Google Scholar 

  11. Dorin RP, Pohl HG, De Filippo RE, Yoo JJ, Atala A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol. 2008;26(4):323–6. doi:10.1007/s00345-008-0316-6.

    Article  Google Scholar 

  12. Fu WJ, Zhang X, Zhang BH, Zhang P, Hong BF, Gao JP, et al. Biodegradable urethral stents seeded with autologous urethral epithelial cells in the treatment of post-traumatic urethral stricture: a feasibility study in a rabbit model. BJU Int. 2009;104(2):263–8. doi:10.1111/j.1464-410X.2009.08366.x.

    Article  Google Scholar 

  13. Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials. 2010;31(31):7971–7. doi:10.1016/j.biomaterials.2010.07.028.

    Article  CAS  Google Scholar 

  14. Chen Y, Mak AF, Wang M, Li JS, Wong MS. In vitro behavior of osteoblast-like cells on PLLA films with a biomimetic apatite or apatite/collagen composite coating. J Mater Sci Mater Med. 2008;19(6):2261–8. doi:10.1007/s10856-007-3335-8.

    Article  CAS  Google Scholar 

  15. Matsunuma H, Kagami H, Narita Y, Hata K, Ono Y, Ohshima S, et al. Constructing a tissue-engineered ureter using a decellularized matrix with cultured uroepithelial cells and bone marrow-derived mononuclear cells. Tissue Eng. 2006;12(3):509–18. doi:10.1089/ten.2006.12.509.

    Article  CAS  Google Scholar 

  16. Hodde JP, Record RD, Tullius RS, Badylak SF. Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng. 2002;8(2):225–34. doi:10.1089/107632702753724996.

    Article  CAS  Google Scholar 

  17. Woods AM, Rodenberg EJ, Hiles MC, Pavalko FM. Improved biocompatibility of small intestinal submucosa (SIS) following conditioning by human endothelial cells. Biomaterials. 2004;25(3):515–25.

    Article  CAS  Google Scholar 

  18. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28(25):3587–93. doi:10.1016/j.biomaterials.2007.04.043.

    Article  CAS  Google Scholar 

  19. Conconi MT, Nico B, Rebuffat P, Crivellato E, Parnigotto PP, Nussdorfer GG, et al. Angiogenic response induced by acellular femoral matrix in vivo. J Anat. 2005;207(1):79–83. doi:10.1111/j.1469-7580.2005.00427.x.

    Article  CAS  Google Scholar 

  20. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005;73(1):61–7. doi:10.1002/jbm.b.30170.

    CAS  Google Scholar 

  21. Masood J, Papatsoris A, Buchholz N. Dual expansion nickel-titanium alloy metal ureteric stent: novel use of a metallic stent to bridge the ureter in the minimally invasive management of complex ureteric and pelviureteric junction strictures. Urol Int. 2010;84(4):477–8. doi:10.1159/000312807.

    Article  CAS  Google Scholar 

  22. Hutton KA, Trejdosiewicz LK, Thomas DF, Southgate J. Urothelial tissue culture for bladder reconstruction: an experimental study. J Urol. 1993;150(2 Pt 2):721–5.

    CAS  Google Scholar 

  23. Pu F, Rhodes NP, Bayon Y, Chen R, Brans G, Benne R, et al. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair. Biomaterials. 2010;31(15):4330–40. doi:10.1016/j.biomaterials.2010.02.010.

    Article  CAS  Google Scholar 

  24. Narita Y, Kagami H, Matsunuma H, Murase Y, Ueda M, Ueda Y. Decellularized ureter for tissue-engineered small-caliber vascular graft. J Artif Organs. 2008;11(2):91–9. doi:10.1007/s10047-008-0407-6.

    Article  CAS  Google Scholar 

  25. Luo JC, Chen W, Chen XH, Qin TW, Huang YC, Xie HQ, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials. 2011;32(3):706–13. doi:10.1016/j.biomaterials.2010.09.017.

    Article  CAS  Google Scholar 

  26. Noble IG, Lee KT, Mundy AR. Transuretero-ureterostomy: a review of 253 cases. Br J Urol. 1997;79(1):20–3.

    Article  CAS  Google Scholar 

  27. Woodhouse CR. Supra-vesical urinary diversion and ureteric re-implantation for malignant disease. Clin Oncol (R Coll Radiol). 2010;22(9):727–32. doi:10.1016/j.clon.2010.07.005.

    Article  CAS  Google Scholar 

  28. Koziak A, Salagierski M, Marcheluk A, Szczesniewski R, Sosnowski M. Early experience in reconstruction of long ureteral strictures with allogenic amniotic membrane. Int J Urol. 2007;14(7):607–10. doi:10.1111/j.1442-2042.2007.01781.x.

    Article  Google Scholar 

  29. Wolters HH, Heistermann HP, Stoppeler S, Hierlemann H, Spiegel HU, Palmes D. A new technique for ureteral defect lesion reconstruction using an autologous vein graft and a biodegradable endoluminal stent. J Urol. 2010;184(3):1197–203. doi:10.1016/j.juro.2010.04.072.

    Article  Google Scholar 

  30. Atala A. Technology insight: applications of tissue engineering and biological substitutes in urology. Nat Clin Pract Urol. 2005;2(3):143–9. doi:10.1038/ncpuro0121.

    Article  Google Scholar 

  31. Dahms SE, Piechota HJ, Nunes L, Dahiya R, Lue TF, Tanagho EA. Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft. Urology. 1997;50(5):818–25. doi:10.1016/S0090-4295(97)00391-9.

    Article  CAS  Google Scholar 

  32. El-Assmy A, Hafez AT, El-Sherbiny MT, El-Hamid MA, Mohsen T, Nour EM, et al. Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study. J Urol. 2004;171(5):1939–42. doi:10.1097/01.ju.0000121437.94629.ef.

    Article  Google Scholar 

  33. Liatsikos EN, Dinlenc CZ, Kapoor R, Bernardo NO, Pikhasov D, Anderson AE, et al. Ureteral reconstruction: small intestine submucosa for the management of strictures and defects of the upper third of the ureter. J Urol. 2001;165(5):1719–23.

    Article  CAS  Google Scholar 

  34. Wood D, Southgate J. Current status of tissue engineering in urology. Curr Opin Urol. 2008;18(6):564–9. doi:10.1097/MOU.0b013e32830f9402.

    Article  Google Scholar 

  35. Matoka DJ, Cheng EY. Tissue engineering in urology. Can Urol Assoc J. 2009;3(5):403–8.

    Google Scholar 

  36. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12(3–4):367–77. doi:10.1016/j.trim.2003.12.016.

    Article  CAS  Google Scholar 

  37. Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Wurm F, et al. Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials. 2002;23(15):3149–58.

    Article  CAS  Google Scholar 

  38. Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials. 2005;26(11):1253–9. doi:10.1016/j.biomaterials.2004.04.031.

    Article  CAS  Google Scholar 

  39. Ragetly G, Griffon DJ, Chung YS. The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater. 2010;6(10):3988–97. doi:10.1016/j.actbio.2010.05.016.

    Article  CAS  Google Scholar 

  40. Bach AD, Bannasch H, Galla TJ, Bittner KM, Stark GB. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng. 2001;7(1):45–53. doi:10.1089/107632701300003287.

    Article  CAS  Google Scholar 

  41. Wechselberger G, Schoeller T, Stenzl A, Ninkovic M, Lille S, Russell RC. Fibrin glue as a delivery vehicle for autologous urothelial cell transplantation onto a prefabricated pouch. J Urol. 1998;160(2):583–6.

    Article  CAS  Google Scholar 

  42. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93(5):839–43.

    Article  CAS  Google Scholar 

  43. Smith MD, Shearer MG, Srivastava S, Scott R, Courtney JM. Quantitative evaluation of the growth of established cell lines on the surface of collagen, collagen composite and reconstituted basement membrane. Urol Res. 1992;20(4):285–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 81070555), Beijing Natural Science Foundation (No. 2092029) and the Major Project of Clinical High and New Technology of Army hospital (No. 413DG63J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Fu.

Additional information

Yongde Xu and Weijun Fu are Co-1st authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Fu, W., Li, G. et al. Autologous urothelial cells transplantation onto a prefabricated capsular stent for tissue engineered ureteral reconstruction. J Mater Sci: Mater Med 23, 1119–1128 (2012). https://doi.org/10.1007/s10856-012-4583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4583-9

Keywords

Navigation