Skip to main content

Advertisement

Log in

Biomechanical characterisation of a degradable magnesium-based (MgCa0.8) screw

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium alloys have been in the focus of research in recent years as degradable biomaterial. The purpose of this study was the biomechanical characterisation of MgCa0.8-screws. The maximum pull out force of screws was determined in a synthetic bone without corrosion and after fixed intervals of corrosion: 24, 48, 72 and 96 h. This in vitro study has been carried out with Hank’s solution with a flow rate corresponding to the blood flow in natural bone. A maximum pull out force (Fmax) of 201.5 ± 9.3 N was measured without corrosion. The biomechanical parameter decreased by 30% after 96 h in corrosive medium compared to the non-corrosion group. A maximum load capacity of 28 ± 7.6 N/h was determined. Our biomechanical data suggests that this biodegradable screw provides a promising bone-screw-fixation and has great potential for medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000;31(Suppl 4):2–6.

    Article  Google Scholar 

  2. Stiffler KS. Internal fracture fixation. Clin Tech Small Anim Pract. 2004;19:105–13.

    Article  Google Scholar 

  3. Claes LE. Mechanical characterization of biodegradable implants. Clin Mater. 1992;10:41–6.

    Article  CAS  Google Scholar 

  4. Taylor MS, Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater. 1994;5:151–7.

    Article  CAS  Google Scholar 

  5. Van der Elst M, Bramer JA, Klein CP, de Lange ES, Patka P, Haarman HJ. Biodegradable interlocking nails for fracture fixation. Clin Orthop Relat Res. 1998;357:192–204.

    Article  Google Scholar 

  6. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.

    Article  CAS  Google Scholar 

  7. Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Should Elbow Surg. 2003;12:35–9.

    Article  Google Scholar 

  8. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.

    Article  CAS  Google Scholar 

  9. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.

    Article  CAS  Google Scholar 

  10. Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010;6:1861–8.

    Article  CAS  Google Scholar 

  11. Revell PA, Damien E, Zhang XS, Evans P, Howlett CR. The effect of magnesium ions on bone bonding to hydroxyapatite. Key Eng Mater. 2004;254–256:447–50.

    Article  Google Scholar 

  12. Hartwig A. Role of magnesium in genomic stability. Mutat Res. 2001;475:113–21.

    Article  CAS  Google Scholar 

  13. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.

    Article  CAS  Google Scholar 

  14. Krause A, Von der Höh N, Bormann D, Krause C, Bach FW, Windhagen H, Meyer-Lindenberg A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci. 2010;45:624–32.

    Article  CAS  Google Scholar 

  15. Kirkland NT, Birbilis N, Walker J, Woodfield T, Dias GJ, Staiger MP. In vitro dissolution of magnesium–calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J Biomed Mater Res B Appl Biomater. 2010;95:91–100.

    Google Scholar 

  16. Li Y, Hodgson PD, Wen C. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. J Mater Sci. 2011;46:365–71.

    Article  Google Scholar 

  17. Lahtinen T, Karjalainen P, Alhava EM. Measurement of bone blood flow with a 133 Xe washout method. A preliminary report. Eur J Nucl Med. 1979;4:435–9.

    Article  CAS  Google Scholar 

  18. Xin Y, Hu T, Chu PK. Influence of test solutions on in vitro studies of biomedical magnesium alloys. J Electrochem Soc. 2010;157:C238–43.

    Article  CAS  Google Scholar 

  19. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10:B3–14.

    Article  CAS  Google Scholar 

  20. Geetha M, Durgalakshmi D, Asokamani R. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci. 2010;2:40–54.

    Article  Google Scholar 

  21. Brown GA, McCarthy T, Bourgeault CA, Callahan DJ. Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res. 2000;18:307–12.

    Article  CAS  Google Scholar 

  22. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118:391–8.

    Article  CAS  Google Scholar 

  23. Huber WO, Reihsner R, Trieb K, Wanivenhaus AH, Beer R. In vitro comparison of biomechanical efficiency of three cannulated screws for arthrodesis of the hindfoot. Foot Ankle Int. 2008;29:225–30.

    Article  Google Scholar 

  24. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33.

    Article  CAS  Google Scholar 

  25. Leung MT, Rabie AB, Wong RW. Stability of connected mini-implants and miniplates for skeletal anchorage in orthodontics. Eur J Orthod. 2008;30:483–9.

    Article  Google Scholar 

  26. Loukota RA, Shelton JC. Mechanical analysis of maxillofacial miniplates. Br J Oral Maxillofac Surg. 1995;33:174–9.

    Article  CAS  Google Scholar 

  27. Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater. 2011;7:1421–8.

    Article  CAS  Google Scholar 

  28. Florvaag B, Kneuertz P, Lazar F, Koebke J, Zöller JE, Braumann B, Mischkowski RA. Biomechanical properties of orthodontic miniscrews. An in vitro study. J Orofac Orthop. 2010;71:53–67.

    Article  Google Scholar 

  29. Song G, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater. 2003;5:837–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by German Research Society (DFG) within the collaborative research project (SFB 599).We thank Markus Badenhop for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazibullah Waizy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waizy, H., Weizbauer, A., Maibaum, M. et al. Biomechanical characterisation of a degradable magnesium-based (MgCa0.8) screw. J Mater Sci: Mater Med 23, 649–655 (2012). https://doi.org/10.1007/s10856-011-4544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4544-8

Keywords

Navigation