Skip to main content

Advertisement

Log in

Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fathi MH, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Tech. 2009;209:1385–91.

    Article  CAS  Google Scholar 

  2. Fathi MH, Doost Mohammadi A. Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A. 2008;474(1–2):128–33.

    Google Scholar 

  3. Ninomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;242:231–6.

    Google Scholar 

  4. Faghihi S, Azari F, Li H, Bateni MR, Szpunar JA, Vali H, Tabrizian M. The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials. 2006;27:3532–9.

    CAS  Google Scholar 

  5. Ning C, Zhou Y. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Acta Biomater. 2008;4:1944–52.

    Article  CAS  Google Scholar 

  6. Fathi MH, Salehi M, Saatchi A, Mortazavi V, Mosavi SB. In vitro corrosion behavior of bioceramic, metallic, and bioceramic–metallic coated stainless steel dental implants. Dent Mater. 2003;19:188–98.

    Article  CAS  Google Scholar 

  7. Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009;5(9):3563–72.

    Article  CAS  Google Scholar 

  8. Raschke M, Wildemann B, Inden P, Bail H, Flyvbjerg A, Hoffmann J, Haas NP, Schmidmaier G. Insulin-like growth factor-1 and transforming growth factor-beta1 accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone. 2002;30(1):144–51.

    Article  CAS  Google Scholar 

  9. Schmidmaier G, Wildemann B, Ball H, Lucke M, Fuchs T, Stemberger A, Flyvbjerg A, Haas NP, Raschke M. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(d, l-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone. 2001;28(4):341–50.

    Article  CAS  Google Scholar 

  10. Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A. Antibacterial poly(d, l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemoth. 2003;51:585–91.

    Article  CAS  Google Scholar 

  11. Price JS, Tencer AF, Arm DM, Bohach GA. Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res. 1996;30:281–6.

    Article  CAS  Google Scholar 

  12. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998;40:1–11.

    Article  CAS  Google Scholar 

  13. Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  14. Paital SR, Dahotre NB. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 2009;5(7):2763–72.

    Article  CAS  Google Scholar 

  15. Blind O, Klein LH, Dailey B, Jordan L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4 V substrates. Dent Mater. 2005;21:1017–24.

    Article  CAS  Google Scholar 

  16. Brunski J. An Introduction to Material in Medicine. London: Academic Press; 1996. p. 37.

    Google Scholar 

  17. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–27.

    Article  CAS  Google Scholar 

  18. Peitl O, Oréfice RL, Hench LL, Brennan AB. Effect of the crystallization of bioactive glass reinforcing agents on the mechanical properties of polymer composites. Mater Sci Eng A. 2004;372:245–51.

    Article  Google Scholar 

  19. Kokubo T. Novel bioactive materials. Anales de Quimica Int Ed. 1997;93:S49–55.

    CAS  Google Scholar 

  20. Hench LL, Kokubo T. In: Black J, Hastings G (Eds) Handbook of biomaterial properties, Part II (6). London: Chapman & Hall; 1988.

  21. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic dissolution products of bioactive glass increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Bioph Res Co. 2000;276:461–5.

    Article  CAS  Google Scholar 

  22. Stoor P, Soderling E, Salonen JI. Antibacterial effect of a bioactive glass paste on oral microorganisms. Acta Orthop Scand. 1998;56:161–5.

    CAS  Google Scholar 

  23. Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass® against supra- and sub-gingival bacteria. Biomaterials. 2001;2:1683–7.

    Article  Google Scholar 

  24. Munukka E, Lepparanta O, Korkeamaki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylanen H, Salonen JI, Viljanen MK, Eerola E. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19:27–32.

    Article  CAS  Google Scholar 

  25. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res. 2007;86:754–7.

    Article  CAS  Google Scholar 

  26. Mortazavi V, Mehdikhani Nahrkhalaji M, Fathi MH, Mousavi SB, Nasr Esfahani B. Antibacterial effects of sol–gel-derived bioactive glass nanoparticle on aerobic bacteria. J Biomed Mater Res. 2010;94A:160–8.

    Article  CAS  Google Scholar 

  27. Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res. 2002;63:271–9.

    Article  CAS  Google Scholar 

  28. Li H, Chang J. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos Sci Technol. 2005;65:2226–32.

    Article  CAS  Google Scholar 

  29. Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 1983;17:71–82.

    Article  CAS  Google Scholar 

  30. Sato M, Slamovicha EB, Webster TJ. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol–gel titanium coatings. Biomaterials. 2005;26:1349–57.

    Article  CAS  Google Scholar 

  31. Berbecaru C, Alexandru HV, Stan GE, Marcov DA, Pasuk I, Ianculescu A. First stages of bioactivity of glass–ceramics thin films prepared by magnetron sputtering technique. Mater Sci Eng B. 2010;169:101–5.

    Article  CAS  Google Scholar 

  32. Stan GE, Pina S, Tulyaganov DU, Ferreira JMF, Pasuk I, Morosanu CO. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. J Mater Sci Mater Med. 2009;21:1047–55.

    Article  Google Scholar 

  33. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  Google Scholar 

  34. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989;84:1663–70.

    Article  CAS  Google Scholar 

  35. Thapa A, Webster TJ, Haberstroh KM. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J Biomed Mater Res A. 2003;67(4):1374–83.

    Article  Google Scholar 

  36. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  Google Scholar 

  37. Gollwitzer H, Thomas P, Diehl P, Steinhauser E, Summer B, Barnstorf S, Gerdesmeyer L, Mittelmeier W, Stemberger A. Biomechanical and allergological characteristics of a biodegradable poly(d, l-lactic acid) coating for orthopaedic implants. J Orthop Res. 2005;23:802–9.

    Article  CAS  Google Scholar 

  38. Chang CK, Wu JS, Mao DL, Ding CX. Mechanical and histological evaluations of hydroxyapatite-coated and noncoated Ti6Al4 V implants in tibia bone. J Biomed Mater Res. 2001;56:17–23.

    Article  CAS  Google Scholar 

  39. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol. 2009;87:133–70.

    Article  CAS  Google Scholar 

  40. Baroni T, Bodo M, Conte C, Muzzi G, Lumare A, Abbrutti G. Silica and its antagonist effect in TGF-beta in lung fibroblasts. J Invest Med. 2001;49:146–56.

    Article  CAS  Google Scholar 

  41. Calomme MR, Vanden-Berghe DA. Effect of the Si, Ca, Mg and P concentrations in serum and the collagen concentration in skin and cartilage. Biol Trace Element Res. 1997;56:153–65.

    Article  CAS  Google Scholar 

  42. Pham KN, Fullston D, Sagoe-Crentsil K. Surface modification for stability of nanosized silica colloids. J Colloid Interf Sci. 2007;315:123–7.

    Article  CAS  Google Scholar 

  43. Yang YN, Zhang HX, Wang P, Zheng QZ, Li J. The influence of nanosized TiO2 fillers on the morphologies and properties of PSFUF membrane. J Member Sci. 2007;288:231–8.

    Article  CAS  Google Scholar 

  44. Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials. 1998;19:2303–11.

    Article  CAS  Google Scholar 

  45. Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL. Biomaterials in orthopedics, Part. III. New York: Marcel Dekker, Inc; 2004. p. 401–23.

    Google Scholar 

  46. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–101.

    Article  Google Scholar 

  47. Gastaldi G, Asti A, Scaffino MF, Visai L, Saino E, Cometa AM, Benazzo F. Human adipose-derived stem cells (hASCs) proliferate and differentiate inosteoblast-like cells on trabecular titanium scaffolds. J Biomed Mater Res A. 2010;94(3):825–32.

    Google Scholar 

  48. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behaviour for bone. Bone. 2009;45:4–16.

    Article  CAS  Google Scholar 

  49. Liu A, Hong Z, Zhuang X, Chen X, Cui Y, Liu Y, Jing X. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (l-lactide) composites. Acta Biomater. 2008;4:1005–15.

    Article  CAS  Google Scholar 

  50. ASTM Committee B08. Standard test method for adhesion or cohesion strength of thermal spray coatings. ASTM C 2001; 633-011-7.

Download references

Acknowledgment

The authors gratefully acknowledge the financial support for this work by the Isfahan University of Technology and Isfahan University of Medical Sciences. A part of this research has been supported by Torabinejad Dental Research Center (Grant No. 290098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehdikhani-Nahrkhalaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdikhani-Nahrkhalaji, M., Fathi, M.H., Mortazavi, V. et al. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J Mater Sci: Mater Med 23, 485–495 (2012). https://doi.org/10.1007/s10856-011-4507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4507-0

Keywords

Navigation